Synthesizing high-fidelity videos from real-world multi-view input is challenging because of the complexities of real-world environments and highly dynamic motions. Previous works based on neural radiance fields have demonstrated high-quality reconstructions of dynamic scenes. However, training such models on real-world scenes is time-consuming, usually taking days or weeks. In this paper, we present a novel method named MixVoxels to better represent the dynamic scenes with fast training speed and competitive rendering qualities. The proposed MixVoxels represents the 4D dynamic scenes as a mixture of static and dynamic voxels and processes them with different networks. In this way, the computation of the required modalities for static voxels can be processed by a lightweight model, which essentially reduces the amount of computation, especially for many daily dynamic scenes dominated by the static background. To separate the two kinds of voxels, we propose a novel variation field to estimate the temporal variance of each voxel. For the dynamic voxels, we design an inner-product time query method to efficiently query multiple time steps, which is essential to recover the high-dynamic motions. As a result, with 15 minutes of training for dynamic scenes with inputs of 300-frame videos, MixVoxels achieves better PSNR than previous methods. Codes and trained models are available at https://github.com/fengres/mixvoxels
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
3D场景由大量背景点主导,这对于主要需要集中在前景对象的检测任务是多余的。在本文中,我们分析了现有的稀疏3D CNN的主要组成部分,发现3D CNN忽略了数据的冗余,并在下降过程中进一步扩大了数据,这带来了大量的多余和不必要的计算间开销。受到这一点的启发,我们提出了一个名为“空间修剪稀疏卷积”(SPS-CONV)的新型卷积操作员,其中包括两个变体,空间修剪的Submanifold稀疏卷积(SPSS-CONV)和空间修剪的常规稀疏卷积(SPRS-CONV),包括这是基于动态确定冗余降低关键领域的想法。我们验证该幅度可以作为确定摆脱基于学习方法的额外计算的关键领域的重要提示。提出的模块可以轻松地将其纳入现有的稀疏3D CNN中,而无需额外的架构修改。关于Kitti,Waymo和Nuscenes数据集的广泛实验表明,我们的方法可以在不损害性能的情况下实现超过50%的GFLOPS。
translated by 谷歌翻译
语义搜索是一项重要的任务,目的是从数据库中找到相关索引以进行查询。它需要一个可以正确学习句子语义的检索模型。基于变压器的模型由于其出色的学习语义表示能力而被广泛用作检索模型。同时,还提出了许多适合它们的正则化方法。在本文中,我们提出了一种新的正则化方法:正则化对比度学习,可以帮助基于变压器的模型学习更好地表示句子。首先,它为每个句子增强了几个不同的语义表示,然后将它们作为监管机构的对比目标。这些对比调节器可以克服过度拟合的问题并减轻各向异性问题。我们首先使用优于预训练的模型Sroberta对7个语义搜索基准测试进行评估。结果表明,我们的方法更有效地学习了出色的句子表示。然后,我们评估具有长期查询和索引的2个具有挑战性的FAQ数据集,咳嗽和FAQIR。我们的实验结果表明,我们的方法表现优于基线方法。
translated by 谷歌翻译
现有的模仿学习方法主要集中于使代理有效地模仿一种表现出的行为,但并未解决行为方式与任务目标之间的潜在矛盾。普遍缺乏有效的方法,使代理可以在完成任务的主要目标的同时部分模仿不同程度的演示行为。在本文中,我们提出了一种称为正规软批评的方法,该方法在受约束的马尔可夫决策过程框架(CMDP)下制定了主要任务和模仿任务。主要任务定义为软性参数(SAC)中使用的最大熵目标,模仿任务定义为约束。我们评估了与视频游戏应用程序相关的连续控制任务的方法。
translated by 谷歌翻译
本文回顾了AIM 2022上压缩图像和视频超级分辨率的挑战。这项挑战包括两条曲目。轨道1的目标是压缩图像的超分辨率,轨迹〜2靶向压缩视频的超分辨率。在轨道1中,我们使用流行的数据集DIV2K作为培训,验证和测试集。在轨道2中,我们提出了LDV 3.0数据集,其中包含365个视频,包括LDV 2.0数据集(335个视频)和30个其他视频。在这一挑战中,有12支球队和2支球队分别提交了赛道1和赛道2的最终结果。所提出的方法和解决方案衡量了压缩图像和视频上超分辨率的最先进。提出的LDV 3.0数据集可在https://github.com/renyang-home/ldv_dataset上找到。此挑战的首页是在https://github.com/renyang-home/aim22_compresssr。
translated by 谷歌翻译
目标条件层次结构增强学习(HRL)是扩大强化学习(RL)技术的有前途的方法。但是,由于高级的动作空间,即目标空间很大。在大型目标空间中进行搜索对于高级子观念和低级政策学习都构成了困难。在本文中,我们表明,可以使用邻接约束来限制从整个目标空间到当前状态的$ k $步骤相邻区域的高级动作空间,从而有效缓解此问题。从理论上讲,我们证明在确定性的马尔可夫决策过程(MDP)中,所提出的邻接约束保留了最佳的层次结构策略,而在随机MDP中,邻接约束诱导了由MDP的过渡结构确定的有界状态价值次数。我们进一步表明,可以通过培训可以区分邻近和非贴种亚目标的邻接网络来实际实现此约束。对离散和连续控制任务的实验结果,包括挑战性的机器人运动和操纵任务,表明合并邻接性约束可显着提高最先进的目标条件条件的HRL方法的性能。
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
Although many studies have successfully applied transfer learning to medical image segmentation, very few of them have investigated the selection strategy when multiple source tasks are available for transfer. In this paper, we propose a prior knowledge guided and transferability based framework to select the best source tasks among a collection of brain image segmentation tasks, to improve the transfer learning performance on the given target task. The framework consists of modality analysis, RoI (region of interest) analysis, and transferability estimation, such that the source task selection can be refined step by step. Specifically, we adapt the state-of-the-art analytical transferability estimation metrics to medical image segmentation tasks and further show that their performance can be significantly boosted by filtering candidate source tasks based on modality and RoI characteristics. Our experiments on brain matter, brain tumor, and white matter hyperintensities segmentation datasets reveal that transferring from different tasks under the same modality is often more successful than transferring from the same task under different modalities. Furthermore, within the same modality, transferring from the source task that has stronger RoI shape similarity with the target task can significantly improve the final transfer performance. And such similarity can be captured using the Structural Similarity index in the label space.
translated by 谷歌翻译
Humans have internal models of robots (like their physical capabilities), the world (like what will happen next), and their tasks (like a preferred goal). However, human internal models are not always perfect: for example, it is easy to underestimate a robot's inertia. Nevertheless, these models change and improve over time as humans gather more experience. Interestingly, robot actions influence what this experience is, and therefore influence how people's internal models change. In this work we take a step towards enabling robots to understand the influence they have, leverage it to better assist people, and help human models more quickly align with reality. Our key idea is to model the human's learning as a nonlinear dynamical system which evolves the human's internal model given new observations. We formulate a novel optimization problem to infer the human's learning dynamics from demonstrations that naturally exhibit human learning. We then formalize how robots can influence human learning by embedding the human's learning dynamics model into the robot planning problem. Although our formulations provide concrete problem statements, they are intractable to solve in full generality. We contribute an approximation that sacrifices the complexity of the human internal models we can represent, but enables robots to learn the nonlinear dynamics of these internal models. We evaluate our inference and planning methods in a suite of simulated environments and an in-person user study, where a 7DOF robotic arm teaches participants to be better teleoperators. While influencing human learning remains an open problem, our results demonstrate that this influence is possible and can be helpful in real human-robot interaction.
translated by 谷歌翻译