自从20020年9月在世界上越来越多的Covid-19,截至世界上的确认病例和死亡人数最多,该国大多数国家都强制了行动限制,导致流动性急剧减少。然而,这场危机的整体影响和长期影响旅行和流动仍然不确定。为此,本研究开发了一个分析框架,决定和分析了影响人类流动性和在美国的最主要的因素。特别是,该研究使用GRANGER因果关系来确定影响日常车辆数英里的重要预测因子,并利用包括脊和套索技术的线性正则化算法,以模拟和预测移动性。状态级时间序列数据是从从3月1日开始的各种开放式访问来源获得,从3月1日至6月13日,2020年6月13日,整个数据集被分成两部分以进行训练和测试。 Granger因果关系选择的变量用于通过普通的最小二乘回归,脊回归和套索回归算法培训三种不同的减少订单模型。最后,在测试数据上检查了开发模型的预测准确性。结果表明,包括新的Covid案件,社会疏散指数,人口的人口,居住在家里的人口,占外的百分比,不同的目的地,社会经济地位,在家中工作的人的百分比,以及州所有人关闭其他人是影响每日VMT的最重要因素。此外,在所有建模技术中,RIDGE回归提供了最常见错误的最优越的性能,而套索回归也比普通最小二乘模型更好。
translated by 谷歌翻译
and widely used information measurement metric, particularly popularized for SSVEP- based Brain-Computer (BCI) interfaces. By combining speed and accuracy into a single-valued parameter, this metric aids in the evaluation and comparison of various target identification algorithms across different BCI communities. To accurately depict performance and inspire an end-to-end design for futuristic BCI designs, a more thorough examination and definition of ITR is therefore required. We model the symbiotic communication medium, hosted by the retinogeniculate visual pathway, as a discrete memoryless channel and use the modified capacity expressions to redefine the ITR. We use graph theory to characterize the relationship between the asymmetry of the transition statistics and the ITR gain with the new definition, leading to potential bounds on data rate performance. On two well-known SSVEP datasets, we compared two cutting-edge target identification methods. Results indicate that the induced DM channel asymmetry has a greater impact on the actual perceived ITR than the change in input distribution. Moreover, it is demonstrated that the ITR gain under the new definition is inversely correlated with the asymmetry in the channel transition statistics. Individual input customizations are further shown to yield perceived ITR performance improvements. An algorithm is proposed to find the capacity of binary classification and further discussions are given to extend such results to ensemble techniques.We anticipate that the results of our study will contribute to the characterization of the highly dynamic BCI channel capacities, performance thresholds, and improved BCI stimulus designs for a tighter symbiosis between the human brain and computer systems while enhancing the efficiency of the underlying communication resources.
translated by 谷歌翻译
Learning policies from fixed offline datasets is a key challenge to scale up reinforcement learning (RL) algorithms towards practical applications. This is often because off-policy RL algorithms suffer from distributional shift, due to mismatch between dataset and the target policy, leading to high variance and over-estimation of value functions. In this work, we propose variance regularization for offline RL algorithms, using stationary distribution corrections. We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer. The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms. We show that the regularizer leads to a lower bound to the offline policy optimization objective, which can help avoid over-estimation errors, and explains the benefits of our approach across a range of continuous control domains when compared to existing state-of-the-art algorithms.
translated by 谷歌翻译
When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of black-box learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall system-level competence of a robot as it performs tasks in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.
translated by 谷歌翻译
Targeted syntactic evaluations of language models ask whether models show stable preferences for syntactically acceptable content over minimal-pair unacceptable inputs. Most targeted syntactic evaluation datasets ask models to make these judgements with just a single context-free sentence as input. This does not match language models' training regime, in which input sentences are always highly contextualized by the surrounding corpus. This mismatch raises an important question: how robust are models' syntactic judgements in different contexts? In this paper, we investigate the stability of language models' performance on targeted syntactic evaluations as we vary properties of the input context: the length of the context, the types of syntactic phenomena it contains, and whether or not there are violations of grammaticality. We find that model judgements are generally robust when placed in randomly sampled linguistic contexts. However, they are substantially unstable for contexts containing syntactic structures matching those in the critical test content. Among all tested models (GPT-2 and five variants of OPT), we significantly improve models' judgements by providing contexts with matching syntactic structures, and conversely significantly worsen them using unacceptable contexts with matching but violated syntactic structures. This effect is amplified by the length of the context, except for unrelated inputs. We show that these changes in model performance are not explainable by simple features matching the context and the test inputs, such as lexical overlap and dependency overlap. This sensitivity to highly specific syntactic features of the context can only be explained by the models' implicit in-context learning abilities.
translated by 谷歌翻译
Recent advancements in sensing and communication facilitate obtaining high-frequency real-time data from various physical systems like power networks, climate systems, biological networks, etc. However, since the data are recorded by physical sensors, it is natural that the obtained data is corrupted by measurement noise. In this paper, we present a novel algorithm for online real-time learning of dynamical systems from noisy time-series data, which employs the Robust Koopman operator framework to mitigate the effect of measurement noise. The proposed algorithm has three main advantages: a) it allows for online real-time monitoring of a dynamical system; b) it obtains a linear representation of the underlying dynamical system, thus enabling the user to use linear systems theory for analysis and control of the system; c) it is computationally fast and less intensive than the popular Extended Dynamic Mode Decomposition (EDMD) algorithm. We illustrate the efficiency of the proposed algorithm by applying it to identify the Van der Pol oscillator, the IEEE 68 bus system, and a ring network of Van der Pol oscillators.
translated by 谷歌翻译
ML-based motion planning is a promising approach to produce agents that exhibit complex behaviors, and automatically adapt to novel environments. In the context of autonomous driving, it is common to treat all available training data equally. However, this approach produces agents that do not perform robustly in safety-critical settings, an issue that cannot be addressed by simply adding more data to the training set - we show that an agent trained using only a 10% subset of the data performs just as well as an agent trained on the entire dataset. We present a method to predict the inherent difficulty of a driving situation given data collected from a fleet of autonomous vehicles deployed on public roads. We then demonstrate that this difficulty score can be used in a zero-shot transfer to generate curricula for an imitation-learning based planning agent. Compared to training on the entire unbiased training dataset, we show that prioritizing difficult driving scenarios both reduces collisions by 15% and increases route adherence by 14% in closed-loop evaluation, all while using only 10% of the training data.
translated by 谷歌翻译
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. We apply contemporary statistical estimation techniques to certify the system's safety through persistent constraint satisfaction with high probability. Moreover, we propose using Bayesian meta-learning algorithms that learn calibrated model priors to help satisfy the assumptions of the control design in challenging settings. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods and that the use of Bayesian meta-learning allows us to adapt to the test environments more rapidly.
translated by 谷歌翻译
Rising usage of deep neural networks to perform decision making in critical applications like medical diagnosis and financial analysis have raised concerns regarding their reliability and trustworthiness. As automated systems become more mainstream, it is important their decisions be transparent, reliable and understandable by humans for better trust and confidence. To this effect, concept-based models such as Concept Bottleneck Models (CBMs) and Self-Explaining Neural Networks (SENN) have been proposed which constrain the latent space of a model to represent high level concepts easily understood by domain experts in the field. Although concept-based models promise a good approach to both increasing explainability and reliability, it is yet to be shown if they demonstrate robustness and output consistent concepts under systematic perturbations to their inputs. To better understand performance of concept-based models on curated malicious samples, in this paper, we aim to study their robustness to adversarial perturbations, which are also known as the imperceptible changes to the input data that are crafted by an attacker to fool a well-learned concept-based model. Specifically, we first propose and analyze different malicious attacks to evaluate the security vulnerability of concept based models. Subsequently, we propose a potential general adversarial training-based defense mechanism to increase robustness of these systems to the proposed malicious attacks. Extensive experiments on one synthetic and two real-world datasets demonstrate the effectiveness of the proposed attacks and the defense approach.
translated by 谷歌翻译
Camera pose estimation is a key step in standard 3D reconstruction pipelines that operate on a dense set of images of a single object or scene. However, methods for pose estimation often fail when only a few images are available because they rely on the ability to robustly identify and match visual features between image pairs. While these methods can work robustly with dense camera views, capturing a large set of images can be time-consuming or impractical. We propose SparsePose for recovering accurate camera poses given a sparse set of wide-baseline images (fewer than 10). The method learns to regress initial camera poses and then iteratively refine them after training on a large-scale dataset of objects (Co3D: Common Objects in 3D). SparsePose significantly outperforms conventional and learning-based baselines in recovering accurate camera rotations and translations. We also demonstrate our pipeline for high-fidelity 3D reconstruction using only 5-9 images of an object.
translated by 谷歌翻译