准确的牙齿体积分割是计算机辅助牙齿分析的先决条件。基于深度学习的牙齿分割方法已经达到了令人满意的表现,但需要大量的牙齿数据。公开可用的牙科数据是有限的,这意味着无法在临床实践中复制,评估和应用现有方法。在本文中,我们建立了一个3D Dental CBCT数据集Ctooth+,具有22个完全注释的卷和146个未标记的体积。我们进一步评估了基于完全监督的学习,半监督学习和积极学习的几种最先进的牙齿量细分策略,并定义了绩效原则。这项工作为牙齿体积分割任务提供了新的基准,该实验可以作为未来基于AI的牙科成像研究和临床应用开发的基线。
translated by 谷歌翻译
变异量子算法(VQA)在NISQ时代表现出巨大的潜力。在VQA的工作流程中,Ansatz的参数迭代更新以近似所需的量子状态。我们已经看到了各种努力,以较少的大门起草更好的安萨兹。在量子计算机中,栅极Ansatz最终将转换为控制信号,例如TransMons上的微波脉冲。并且对照脉冲需要精心校准,以最大程度地减少误差(例如过度旋转和旋转)。在VQA的情况下,此过程将引入冗余,但是VQAS的变异性能自然可以通过更新幅度和频率参数来处理过度旋转和重组的问题。因此,我们提出了PAN,这是一种用于VQA的天然脉冲ANSATZ GENTARATOR框架。我们生成具有可训练参数用于振幅和频率的天然脉冲ansatz。在我们提出的锅中,我们正在调整参数脉冲,这些脉冲在NISQ计算机上得到了内在支持。考虑到本机 - 脉冲ANSATZ不符合参数迁移规则,我们需要部署非级别优化器。为了限制发送到优化器的参数数量,我们采用了一种生成本机 - 脉冲ANSATZ的渐进式方式。实验是在模拟器和量子设备上进行的,以验证我们的方法。当在NISQ机器上采用时,PAN获得的延迟平均提高了86%。 PAN在H2和HEH+上的VQE任务分别能够达到99.336%和96.482%的精度,即使NISQ机器中有很大的噪声。
translated by 谷歌翻译
在本文中,我们提出了一个名为“星际争霸多代理挑战”的新颖基准,代理商学习执行多阶段任务并使用没有精确奖励功能的环境因素。以前的挑战(SMAC)被认为是多名强化学习的标准基准,主要涉及确保所有代理人仅通过具有明显的奖励功能的精细操纵而合作消除接近对手。另一方面,这一挑战对MARL算法的探索能力有效地学习隐式多阶段任务和环境因素以及微控制感兴趣。这项研究涵盖了进攻和防御性场景。在进攻情况下,代理商必须学会先寻找对手,然后消除他们。防御性场景要求代理使用地形特征。例如,代理需要将自己定位在保护结构后面,以使敌人更难攻击。我们研究了SMAC+下的MARL算法,并观察到最近的方法在与以前的挑战类似,但在进攻情况下表现不佳。此外,我们观察到,增强的探索方法对性能有积极影响,但无法完全解决所有情况。这项研究提出了未来研究的新方向。
translated by 谷歌翻译
量子噪声是嘈杂中间级量子(NISQ)计算机中的关键挑战。以前的缓解噪声的工作主要集中在门级或脉冲级噪声自适应编译。然而,有限的研究工作通过使量子电路本身对噪声具有更高的优化级别。我们提出了Quoutumnas,是变分电路和量子位映射的噪声自适应共同搜索的全面框架。变形量子电路是构建QML和量子仿真的有希望的方法。然而,由于大型设计空间和参数训练成本,找到最佳变分电路及其最佳参数是具有挑战性的。我们建议通过引入新的超级速度来解耦电路搜索和参数培训。超电路由多层预定的参数化栅极构成,并通过迭代采样和更新其的参数子集(Subcircuit)训练。它提供了从头开始培训的子通差形性能的准确估计。然后我们执行Subcircuit的演进共同搜索和其量子位映射。使用从超级电路继承的参数和使用真实设备噪声模型进行估计,估计子电路性能。最后,我们执行迭代栅极修剪和FineTuning以去除冗余栅极。在10个量子计算上广泛评估了12个QML和VQE基准,Quoutumnas显着优于基线。对于QML,Quoutumnas是第一个展示超过95%的2级,85%的4级和真实QC的32%的10级分类准确性。与UCCSD相比,它还实现了H2,H2O,LIH,CH4,BEH2上的VQE任务的最低特征值。我们还开源Quantumengine(https://github.com/mit-han-lab/pytorch-quantum),用于快速训练参数化量子电路,以促进未来的研究。
translated by 谷歌翻译
为了部署,神经架构搜索应该是硬件感知的,以满足设备特定的约束(例如,内存使用,延迟和能量消耗),并提高模型效率。硬件感知NAS的现有方法从目标设备收集大量样本(例如,精度和延迟),要么构建查找表或延迟估计器。然而,这种方法在现实世界方案中是不切实际的,因为存在具有不同硬件规格的许多器件,并从这些大量设备收集样本将需要禁止的计算和货币成本。为了克服这些限制,我们提出了硬件 - 自适应高效延迟预测器(帮助),其将设备特定的延迟估计问题交给了元学习问题,使得我们可以估计模型对给定任务的性能的延迟有一些样品的看不见的装置。为此,我们引入了新颖的硬件嵌入,将任何设备嵌入,将其视为输出延迟的黑盒功能,并使用硬件嵌入式以设备依赖方式学习硬件自适应延迟预测器。我们验证了在看不见的平台上实现了延迟估计性能的提议帮助,其中它达到了高估计性能,少于10个测量样本,优于所有相关基线。我们还验证了在没有它的帮助下使用帮助的端到端NAS框架,并表明它在很大程度上降低了基础NAS方法的总时间成本,在延迟约束的设置中。代码可在https://github.com/hayeonlee/help获得。
translated by 谷歌翻译
本文回顾了关于压缩视频质量增强质量的第一个NTIRE挑战,重点是拟议的方法和结果。在此挑战中,采用了新的大型不同视频(LDV)数据集。挑战有三个曲目。Track 1和2的目标是增强HEVC在固定QP上压缩的视频,而Track 3旨在增强X265压缩的视频,以固定的位速率压缩。此外,轨道1和3的质量提高了提高保真度(PSNR)的目标,以及提高感知质量的2个目标。这三个曲目完全吸引了482个注册。在测试阶段,分别提交了12个团队,8支球队和11支球队,分别提交了轨道1、2和3的最终结果。拟议的方法和解决方案衡量视频质量增强的最先进。挑战的首页:https://github.com/renyang-home/ntire21_venh
translated by 谷歌翻译
Learning with noisy-labels has become an important research topic in computer vision where state-of-the-art (SOTA) methods explore: 1) prediction disagreement with co-teaching strategy that updates two models when they disagree on the prediction of training samples; and 2) sample selection to divide the training set into clean and noisy sets based on small training loss. However, the quick convergence of co-teaching models to select the same clean subsets combined with relatively fast overfitting of noisy labels may induce the wrong selection of noisy label samples as clean, leading to an inevitable confirmation bias that damages accuracy. In this paper, we introduce our noisy-label learning approach, called Asymmetric Co-teaching (AsyCo), which introduces novel prediction disagreement that produces more consistent divergent results of the co-teaching models, and a new sample selection approach that does not require small-loss assumption to enable a better robustness to confirmation bias than previous methods. More specifically, the new prediction disagreement is achieved with the use of different training strategies, where one model is trained with multi-class learning and the other with multi-label learning. Also, the new sample selection is based on multi-view consensus, which uses the label views from training labels and model predictions to divide the training set into clean and noisy for training the multi-class model and to re-label the training samples with multiple top-ranked labels for training the multi-label model. Extensive experiments on synthetic and real-world noisy-label datasets show that AsyCo improves over current SOTA methods.
translated by 谷歌翻译
Recent years have witnessed significant growth of face alignment. Though dense facial landmark is highly demanded in various scenarios, e.g., cosmetic medicine and facial beautification, most works only consider sparse face alignment. To address this problem, we present a framework that can enrich landmark density by existing sparse landmark datasets, e.g., 300W with 68 points and WFLW with 98 points. Firstly, we observe that the local patches along each semantic contour are highly similar in appearance. Then, we propose a weakly-supervised idea of learning the refinement ability on original sparse landmarks and adapting this ability to enriched dense landmarks. Meanwhile, several operators are devised and organized together to implement the idea. Finally, the trained model is applied as a plug-and-play module to the existing face alignment networks. To evaluate our method, we manually label the dense landmarks on 300W testset. Our method yields state-of-the-art accuracy not only in newly-constructed dense 300W testset but also in the original sparse 300W and WFLW testsets without additional cost.
translated by 谷歌翻译
Exploring dense matching between the current frame and past frames for long-range context modeling, memory-based methods have demonstrated impressive results in video object segmentation (VOS) recently. Nevertheless, due to the lack of instance understanding ability, the above approaches are oftentimes brittle to large appearance variations or viewpoint changes resulted from the movement of objects and cameras. In this paper, we argue that instance understanding matters in VOS, and integrating it with memory-based matching can enjoy the synergy, which is intuitively sensible from the definition of VOS task, \ie, identifying and segmenting object instances within the video. Towards this goal, we present a two-branch network for VOS, where the query-based instance segmentation (IS) branch delves into the instance details of the current frame and the VOS branch performs spatial-temporal matching with the memory bank. We employ the well-learned object queries from IS branch to inject instance-specific information into the query key, with which the instance-augmented matching is further performed. In addition, we introduce a multi-path fusion block to effectively combine the memory readout with multi-scale features from the instance segmentation decoder, which incorporates high-resolution instance-aware features to produce final segmentation results. Our method achieves state-of-the-art performance on DAVIS 2016/2017 val (92.6% and 87.1%), DAVIS 2017 test-dev (82.8%), and YouTube-VOS 2018/2019 val (86.3% and 86.3%), outperforming alternative methods by clear margins.
translated by 谷歌翻译
The importance of learning rate (LR) schedules on network pruning has been observed in a few recent works. As an example, Frankle and Carbin (2019) highlighted that winning tickets (i.e., accuracy preserving subnetworks) can not be found without applying a LR warmup schedule and Renda, Frankle and Carbin (2020) demonstrated that rewinding the LR to its initial state at the end of each pruning cycle improves performance. In this paper, we go one step further by first providing a theoretical justification for the surprising effect of LR schedules. Next, we propose a LR schedule for network pruning called SILO, which stands for S-shaped Improved Learning rate Optimization. The advantages of SILO over existing state-of-the-art (SOTA) LR schedules are two-fold: (i) SILO has a strong theoretical motivation and dynamically adjusts the LR during pruning to improve generalization. Specifically, SILO increases the LR upper bound (max_lr) in an S-shape. This leads to an improvement of 2% - 4% in extensive experiments with various types of networks (e.g., Vision Transformers, ResNet) on popular datasets such as ImageNet, CIFAR-10/100. (ii) In addition to the strong theoretical motivation, SILO is empirically optimal in the sense of matching an Oracle, which exhaustively searches for the optimal value of max_lr via grid search. We find that SILO is able to precisely adjust the value of max_lr to be within the Oracle optimized interval, resulting in performance competitive with the Oracle with significantly lower complexity.
translated by 谷歌翻译