由于对不同部门的电子芯片的需求不断增长,因此,半导体公司被授权离岸其制造流程。这一不必要的事情使他们对筹码的筹码有关,并引起了硬件攻击的创造。在这种情况下,半导体供应链中的不同实体可以恶意行事,并对从设备到系统的设计计算层进行攻击。我们的攻击是一个硬件特洛伊木马,在不受信任的铸造厂中插入了在面具的生成/制造过程中。特洛伊木马在制造,通过添加,删除或设计单元的变化中留下了脚印。为了解决这个问题,我们在这项工作中提出了可解释的视觉系统,用于硬件测试和保证(EVHA),可以检测以低成本,准确和快速的方式对设计的最小变化。该系统的输入是从正在检查的集成电路(IC)中获取的扫描电子显微镜(SEM)图像。系统输出是通过添加,删除或在单元格级的设计单元格中使用任何缺陷和/或硬件木马来确定IC状态。本文概述了我们的防御系统的设计,开发,实施和分析。
translated by 谷歌翻译
We propose a novel multi-task method for quantile forecasting with shared Linear layers. Our method is based on the Implicit quantile learning approach, where samples from the Uniform distribution $\mathcal{U}(0, 1)$ are reparameterized to quantile values of the target distribution. We combine the implicit quantile and input time series representations to directly forecast multiple quantile estimations for multiple horizons jointly. Prior works have adopted a Linear layer for the direct estimation of all forecasting horizons in a multi-task learning setup. We show that following similar intuition from multi-task learning to exploit correlations among forecast horizons, we can model multiple quantile estimates as auxiliary tasks for each of the forecast horizon to improve forecast accuracy across the quantile estimates compared to modeling only a single quantile estimate. We show learning auxiliary quantile tasks leads to state-of-the-art performance on deterministic forecasting benchmarks concerning the main-task of forecasting the 50$^{th}$ percentile estimate.
translated by 谷歌翻译
当数据自然分配到通过基础图的代理商之间,分散学习提供了隐私和沟通效率。通过过度参数化的学习设置,在该设置中,在该设置中训练了零训练损失,我们研究了分散学习的分散学习算法和概括性能,并在可分离的数据上下降。具体而言,对于分散的梯度下降(DGD)和各种损失函数,在无穷大(包括指数损失和逻辑损失)中渐近为零,我们得出了新的有限时间泛化界限。这补充了一长串最近的工作,该工作研究了概括性能和梯度下降的隐含偏见,而不是可分离的数据,但迄今为止,梯度下降的偏见仅限于集中学习方案。值得注意的是,我们的概括范围匹配其集中式同行。这背后的关键和独立感兴趣的是,在一类自我结合的损失方面建立了关于训练损失和DGD的传记率的新界限。最后,在算法方面,我们设计了改进的基于梯度的例程,可分离数据,并在经验上证明了训练和概括性能方面的加速命令。
translated by 谷歌翻译
市场需求紧迫,以最大程度地减少迅速伽马中子激活分析(PGNAA)光谱测量机的测试时间,以便它可以充当即时材料分析仪,例如立即对废物样品进行分类,并根据测试样品的检测成分确定最佳的回收方法。本文介绍了深度学习分类的新开发,并旨在减少PGNAA机器的测试时间。我们提出随机采样方法和类激活图(CAM)以生成“缩小”样品并连续训练CNN模型。随机采样方法(RSM)旨在减少样品中的测量时间,而类激活图(CAM)用于滤除缩小样品的不太重要的能量范围。我们将总PGNAA测量时间缩短到2.5秒,同时确保我们的数据集的精度约为96.88%,该数据集使用12种不同的物质。与分类不同的材料分类相比,具有相同元素以归档良好精度的物质需要更多的测试时间(样品计数率)。例如,铜合金的分类需要将近24秒的测试时间才能达到98%的精度。
translated by 谷歌翻译
对于环境,可持续的经济和政治原因,回收过程变得越来越重要,旨在更高的二级原材料使用。目前,对于铜和铝业,没有用于非均匀材料的非破坏性在线分析的方法。PROMP GAMMA中子激活分析(PGNAA)具有克服这一挑战的潜力。由于短期测量,使用PGNAA进行实时分类时的困难是少量嘈杂的数据。在这种情况下,使用峰值分析使用详细峰的经典评估方法失败。因此,我们建议将光谱数据视为概率分布。然后,我们可以使用最大对数可能相对于内核密度估计来对材料进行分类,并使用离散抽样来优化超参数。对于纯铝合金的测量,我们将在0.25秒以下的铝合金几乎分类。
translated by 谷歌翻译
Visual Analytics社区已提出了几种用户建模算法,以捕获和分析用户的交互行为,以帮助用户进行数据探索和洞察力生成。例如,有些人可以检测勘探偏见,而另一些人可以预测用户在进行交互之前将与用户进行交互的数据点。研究人员认为,这种算法收集可以帮助创建更智能的视觉分析工具。但是,社区缺乏对这些现有技术的严格评估和比较。结果,关于使用哪种方法以及何时使用的指导有限。我们的论文旨在通过比较和对八种用户建模算法进行比较并根据其在四个用户研究数据集的多样化的性能进行比较和排名的差距来填补这一缺失的空白。我们分析了探索偏差检测,数据相互作用预测和算法复杂性等措施。根据我们的发现,我们重点介绍了分析用户互动和可视化出处的新方向。
translated by 谷歌翻译
学习表达性分子表示对于促进分子特性的准确预测至关重要。尽管图形神经网络(GNNS)在分子表示学习中取得了显着进步,但它们通常面临诸如邻居探索,不足,过度光滑和过度阵列之类的局限性。同样,由于参数数量大,GNN通常具有较高的计算复杂性。通常,当面对相对大尺寸的图形或使用更深的GNN模型体系结构时,这种限制会出现或增加。克服这些问题的一个想法是将分子图简化为小型,丰富且有益的信息,这更有效,更具挑战性的培训GNN。为此,我们提出了一个新颖的分子图粗化框架,名为FUNQG利用函数组,作为分子的有影响力的构件来确定其性质,基于称为商图的图理论概念。通过实验,我们表明所产生的信息图比分子图小得多,因此是训练GNN的良好候选者。我们将FUNQG应用于流行的分子属性预测基准,然后比较所获得的数据集上的GNN体系结构的性能与原始数据集上的几个最先进的基线。通过实验,除了其参数数量和低计算复杂性的急剧减少之外,该方法除了其急剧减少之外,在各种数据集上的表现显着优于先前的基准。因此,FUNQG可以用作解决分子表示学习问题的简单,成本效益且可靠的方法。
translated by 谷歌翻译
联合学习(FL)是一种新兴的范式,可实现对机器学习模型的大规模分布培训,同时仍提供隐私保证。在这项工作中,我们在将联合优化扩展到大节点计数时共同解决了两个主要的实际挑战:中央权威和单个计算节点之间紧密同步的需求以及中央服务器和客户端之间的传输成本较大。具体而言,我们提出了经典联合平均(FedAvg)算法的新变体,该算法支持异步通信和通信压缩。我们提供了一种新的分析技术,该技术表明,尽管有这些系统放松,但在合理的参数设置下,我们的算法基本上与FedAvg的最著名界限相匹配。在实验方面,我们表明我们的算法确保标准联合任务的快速实用收敛。
translated by 谷歌翻译
在智能辅导系统中生成提示的现有工作(ITS)主要集中在手动和非个人反馈上。在这项工作中,我们探索了ITS中的个性化反馈作为个性化反馈。我们的个性化反馈可以在学生答案中查明正确,错误或缺失的短语,并通过提出自然语言问题来指导他们正确答案。我们的方法结合了因果分析,以使用基于文本相似性的NLP变压器模型来分解学生答案,以识别正确和不正确或缺失的零件。我们培训了一些弹药的神经问题生成和问题重新排序模型,以显示解决学生答案中缺少的组件的问题,这些组件使学生朝着正确的答案迈进。在基于真实对话的ITS测试时,我们的模型在学生学习的增长方面大大优于简单和强大的基线。最后,我们表明我们个性化的纠正反馈系统有可能改善生成的问答系统。
translated by 谷歌翻译
除了预测误差的最小化之外,回归方案的两个最期望的性质是稳定性和解释性。由这些原则驱动,我们提出了连续域配方进行一维回归问题。在我们的第一种方法中,我们使用Lipschitz常数作为规范器,这导致了解学习映射的整体稳健性的调整。在我们的第二种方法中,我们使用用户定义的上限和使用稀疏性常规程序来控制Lipschitz常数,以便更简单地支持(以及因此,更可取的可解释)的解决方案。后者制剂的理论研究部分地通过其证明的等效性,利用整流线性单元(Relu)激活和重量衰减,训练Lipschitz受约束的两层单变量神经网络。通过证明代表定理,我们表明这两个问题都承认是连续和分段线性(CPWL)功能的全局最小值。此外,我们提出了高效的算法,该算法找到了每个问题的稀疏解决方案:具有最少数量的线性区域的CPWL映射。最后,我们在数字上说明了我们的配方的结果。
translated by 谷歌翻译