最近,为了在各个领域之间具有更好的可接受性,研究人员认为,机器智能算法必须能够提供人类可以在因果关系中理解的解释。这一方面也称为可控性,可以达到特定水平的人类水平解释性。一种称为反事实的特定算法可能能够提供可有效性。在统计数据中,因果关系已被研究和应用多年,但在人工智能(AI)方面尚未详细介绍。在首次研究的研究中,我们采用了因果推理的原则来提供解释性来解决分析客户关系管理(ACRM)问题。在银行和保险的背景下,有关解释性的当前研究试图解决与因果关系有关的问题,例如为什么该模型做出这样的决定,并且该模型的选择是否受到特定因素的影响?我们提出了一种以干预形式的解决方案,其中研究了目标特征的ACRM数据集特征分布的效果。随后,还获得了一套反事实,可以向任何需要解释银行/保险公司做出的决定的客户提供。除了信用卡流失预测数据集外,还为贷款默认,保险欺诈检测和信用卡欺诈检测数据集生成了高质量的反事实,其中观察到不超过三个功能的变化。
translated by 谷歌翻译
近年来,可解释的人工智能(XAI)研究因对用户社区对AI的更高透明度和信任的需求而获得了突出性。这尤其重要,因为AI在金融,医学等敏感领域采用,在这种敏感领域,对社会,道德和安全的影响是巨大的。经过彻底的系统评估,XAI的工作主要集中于机器学习(ML)进行分类,决策或行动。据我们所知,没有任何据报道提供可解释的加固学习(XRL)方法来交易金融股票的方法。在本文中,我们提议在流行的深层增强学习体系结构,深Q网络(DQN)上采用Shapley添加说明(SHAP),以解释代理商在给定实例中在金融股票交易中的行动。为了证明我们方法的有效性,我们在两个流行的数据集(即Sensex和DJIA)上对其进行了测试,并报告了结果。
translated by 谷歌翻译
机器学习中最困难的任务是解释训练有素的浅神经网络。深度神经网络(DNNS)为更多的任务提供了令人印象深刻的结果,但是通常不清楚这种训练有素的深神经网络如何做出决策。提供特征重要性是浅层神经网络中使用的最重要和流行的解释技术。在本文中,我们开发了一种算法,扩展了Garson算法的思想,以解释基于信念网络的自动编码器(DBNA)。它用于确定DBN中每个输入特征的贡献。它可用于具有许多隐藏层的任何神经网络。该方法的有效性在分类和从文献中获取的回归数据集进行了测试。将此方法鉴定出的重要特征与Wald Chi Square(\ c {hi} 2)获得的特征进行了比较。对于4个分类数据集中的2个和5个回归数据集中的2个,我们提出的方法导致识别更好质量的特征,从而导致统计上更重要的结果,相对于wald \ c {hi} 2。
translated by 谷歌翻译
Quadruped robots are currently used in industrial robotics as mechanical aid to automate several routine tasks. However, presently, the usage of such a robot in a domestic setting is still very much a part of the research. This paper discusses the understanding and virtual simulation of such a robot capable of detecting and understanding human emotions, generating its gait, and responding via sounds and expression on a screen. To this end, we use a combination of reinforcement learning and software engineering concepts to simulate a quadruped robot that can understand emotions, navigate through various terrains and detect sound sources, and respond to emotions using audio-visual feedback. This paper aims to establish the framework of simulating a quadruped robot that is emotionally intelligent and can primarily respond to audio-visual stimuli using motor or audio response. The emotion detection from the speech was not as performant as ERANNs or Zeta Policy learning, still managing an accuracy of 63.5%. The video emotion detection system produced results that are almost at par with the state of the art, with an accuracy of 99.66%. Due to its "on-policy" learning process, the PPO algorithm was extremely rapid to learn, allowing the simulated dog to demonstrate a remarkably seamless gait across the different cadences and variations. This enabled the quadruped robot to respond to generated stimuli, allowing us to conclude that it functions as predicted and satisfies the aim of this work.
translated by 谷歌翻译
Searching long egocentric videos with natural language queries (NLQ) has compelling applications in augmented reality and robotics, where a fluid index into everything that a person (agent) has seen before could augment human memory and surface relevant information on demand. However, the structured nature of the learning problem (free-form text query inputs, localized video temporal window outputs) and its needle-in-a-haystack nature makes it both technically challenging and expensive to supervise. We introduce Narrations-as-Queries (NaQ), a data augmentation strategy that transforms standard video-text narrations into training data for a video query localization model. Validating our idea on the Ego4D benchmark, we find it has tremendous impact in practice. NaQ improves multiple top models by substantial margins (even doubling their accuracy), and yields the very best results to date on the Ego4D NLQ challenge, soundly outperforming all challenge winners in the CVPR and ECCV 2022 competitions and topping the current public leaderboard. Beyond achieving the state-of-the-art for NLQ, we also demonstrate unique properties of our approach such as gains on long-tail object queries, and the ability to perform zero-shot and few-shot NLQ.
translated by 谷歌翻译
Machine Translation (MT) system generally aims at automatic representation of source language into target language retaining the originality of context using various Natural Language Processing (NLP) techniques. Among various NLP methods, Statistical Machine Translation(SMT). SMT uses probabilistic and statistical techniques to analyze information and conversion. This paper canvasses about the development of bilingual SMT models for translating English to fifteen low-resource Indian Languages (ILs) and vice versa. At the outset, all 15 languages are briefed with a short description related to our experimental need. Further, a detailed analysis of Samanantar and OPUS dataset for model building, along with standard benchmark dataset (Flores-200) for fine-tuning and testing, is done as a part of our experiment. Different preprocessing approaches are proposed in this paper to handle the noise of the dataset. To create the system, MOSES open-source SMT toolkit is explored. Distance reordering is utilized with the aim to understand the rules of grammar and context-dependent adjustments through a phrase reordering categorization framework. In our experiment, the quality of the translation is evaluated using standard metrics such as BLEU, METEOR, and RIBES
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译
We propose an ensemble approach to predict the labels in linear programming word problems. The entity identification and the meaning representation are two types of tasks to be solved in the NL4Opt competition. We propose the ensembleCRF method to identify the named entities for the first task. We found that single models didn't improve for the given task in our analysis. A set of prediction models predict the entities. The generated results are combined to form a consensus result in the ensembleCRF method. We present an ensemble text generator to produce the representation sentences for the second task. We thought of dividing the problem into multiple small tasks due to the overflow in the output. A single model generates different representations based on the prompt. All the generated text is combined to form an ensemble and produce a mathematical meaning of a linear programming problem.
translated by 谷歌翻译
The previous fine-grained datasets mainly focus on classification and are often captured in a controlled setup, with the camera focusing on the objects. We introduce the first Fine-Grained Vehicle Detection (FGVD) dataset in the wild, captured from a moving camera mounted on a car. It contains 5502 scene images with 210 unique fine-grained labels of multiple vehicle types organized in a three-level hierarchy. While previous classification datasets also include makes for different kinds of cars, the FGVD dataset introduces new class labels for categorizing two-wheelers, autorickshaws, and trucks. The FGVD dataset is challenging as it has vehicles in complex traffic scenarios with intra-class and inter-class variations in types, scale, pose, occlusion, and lighting conditions. The current object detectors like yolov5 and faster RCNN perform poorly on our dataset due to a lack of hierarchical modeling. Along with providing baseline results for existing object detectors on FGVD Dataset, we also present the results of a combination of an existing detector and the recent Hierarchical Residual Network (HRN) classifier for the FGVD task. Finally, we show that FGVD vehicle images are the most challenging to classify among the fine-grained datasets.
translated by 谷歌翻译