When used in complex engineered systems, such as communication networks, artificial intelligence (AI) models should be not only as accurate as possible, but also well calibrated. A well-calibrated AI model is one that can reliably quantify the uncertainty of its decisions, assigning high confidence levels to decisions that are likely to be correct and low confidence levels to decisions that are likely to be erroneous. This paper investigates the application of conformal prediction as a general framework to obtain AI models that produce decisions with formal calibration guarantees. Conformal prediction transforms probabilistic predictors into set predictors that are guaranteed to contain the correct answer with a probability chosen by the designer. Such formal calibration guarantees hold irrespective of the true, unknown, distribution underlying the generation of the variables of interest, and can be defined in terms of ensemble or time-averaged probabilities. In this paper, conformal prediction is applied for the first time to the design of AI for communication systems in conjunction to both frequentist and Bayesian learning, focusing on demodulation, modulation classification, and channel prediction.
translated by 谷歌翻译
无人驾驶基站(UABSS)可以部署在车辆无线网络中,以支持应用程序通过车辆到设备(V2X)服务等应用。此类系统中的一个关键问题是设计算法,该算法可以有效地优化UAB的轨迹,以最大程度地提高覆盖范围。在现有的解决方案中,通常通过常规加固学习(RL)从头开始进行此类优化。在本文中,我们建议将连续的元RL用作将信息从先前经验丰富的流量配置转移到新条件的手段,以减少优化UABS策略所需的时间。采用连续的元策略搜索(COMP)策略,与常规RL相比,我们表现出显着的效率提高,以及幼稚的转移学习方法。
translated by 谷歌翻译
这项工作仔细研究了传统的机器学习方法通​​过可靠性和鲁棒性的镜头应用于无线通信问题。深度学习技术采用了常见的框架,并已知提供校准较差的决策,这些决策不会再现由训练数据规模的限制引起的真正不确定性。贝叶斯学习原则上能够解决这一缺点,但实际上,模型错误指定和异常值的存在损害。在无线通信设置中,这两个问题都普遍存在,其中机器学习模型的能力受资源限制的影响,培训数据受噪声和干扰的影响。在这种情况下,我们探讨了强大的贝叶斯学习框架的应用。经过教程式的贝叶斯学习介绍,我们就精确,校准和对异常值和错误指定的鲁棒性进行了强大的贝叶斯学习对几个重要的无线沟通问题的优点。
translated by 谷歌翻译
Two of the main principles underlying the life cycle of an artificial intelligence (AI) module in communication networks are adaptation and monitoring. Adaptation refers to the need to adjust the operation of an AI module depending on the current conditions; while monitoring requires measures of the reliability of an AI module's decisions. Classical frequentist learning methods for the design of AI modules fall short on both counts of adaptation and monitoring, catering to one-off training and providing overconfident decisions. This paper proposes a solution to address both challenges by integrating meta-learning with Bayesian learning. As a specific use case, the problems of demodulation and equalization over a fading channel based on the availability of few pilots are studied. Meta-learning processes pilot information from multiple frames in order to extract useful shared properties of effective demodulators across frames. The resulting trained demodulators are demonstrated, via experiments, to offer better calibrated soft decisions, at the computational cost of running an ensemble of networks at run time. The capacity to quantify uncertainty in the model parameter space is further leveraged by extending Bayesian meta-learning to an active setting. In it, the designer can select in a sequential fashion channel conditions under which to generate data for meta-learning from a channel simulator. Bayesian active meta-learning is seen in experiments to significantly reduce the number of frames required to obtain efficient adaptation procedure for new frames.
translated by 谷歌翻译
我们介绍韩语了解评估(KLUE)基准。 Klue是8个韩国自然语言理解(nlu)任务的集合,包括主题分类,语言典的相似性,自然语言推断,命名实体识别,关系提取,依赖解析,机器阅读理解和对话状态跟踪。我们从各种源语料库中展开的所有任务,同时尊重版权,以确保任何没有任何限制的人的可访问性。考虑到道德考虑,我们仔细设计了注释协议。随着基准任务和数据,我们为每个任务提供适用的评估指标和微调配方,为每项任务进行预训练语言模型。我们还释放了预用的语言模型(PLM),Klue-Bert和Klue-Roberta,以帮助在KLUE上再现基线模型,从而促进未来的研究。我们通过拟议的Klue基准套件从初步实验中进行了一些有趣的观察,已经证明了这款新的基准套件的有用性。首先,我们找到了klue-roberta-mantring的其他基线,包括多语种plms和现有的开源韩国plms。其次,即使我们从预先预测语料库中取代个人身份信息,我们也会看到性能下降最小,这表明隐私和NLU能力并不彼此可能。最后,我们发现,使用BPE标记与语素级预象的组合,在涉及语素级标记,检测和发电的任务中是有效的。除了加速韩国人NLP研究外,我们的创建Klue的全面文件将有助于将来为其他语言创建类似的资源。 klue在https://klue-benchmark.com上提供。
translated by 谷歌翻译
The automated segmentation and tracking of macrophages during their migration are challenging tasks due to their dynamically changing shapes and motions. This paper proposes a new algorithm to achieve automatic cell tracking in time-lapse microscopy macrophage data. First, we design a segmentation method employing space-time filtering, local Otsu's thresholding, and the SUBSURF (subjective surface segmentation) method. Next, the partial trajectories for cells overlapping in the temporal direction are extracted in the segmented images. Finally, the extracted trajectories are linked by considering their direction of movement. The segmented images and the obtained trajectories from the proposed method are compared with those of the semi-automatic segmentation and manual tracking. The proposed tracking achieved 97.4% of accuracy for macrophage data under challenging situations, feeble fluorescent intensity, irregular shapes, and motion of macrophages. We expect that the automatically extracted trajectories of macrophages can provide pieces of evidence of how macrophages migrate depending on their polarization modes in the situation, such as during wound healing.
translated by 谷歌翻译
Data-centric AI has shed light on the significance of data within the machine learning (ML) pipeline. Acknowledging its importance, various research and policies are suggested by academia, industry, and government departments. Although the capability of utilizing existing data is essential, the capability to build a dataset has become more important than ever. In consideration of this trend, we propose a "Data Management Operation and Recipes" that will guide the industry regardless of the task or domain. In other words, this paper presents the concept of DMOps derived from real-world experience. By offering a baseline for building data, we want to help the industry streamline its data operation optimally.
translated by 谷歌翻译
According to the rapid development of drone technologies, drones are widely used in many applications including military domains. In this paper, a novel situation-aware DRL- based autonomous nonlinear drone mobility control algorithm in cyber-physical loitering munition applications. On the battlefield, the design of DRL-based autonomous control algorithm is not straightforward because real-world data gathering is generally not available. Therefore, the approach in this paper is that cyber-physical virtual environment is constructed with Unity environment. Based on the virtual cyber-physical battlefield scenarios, a DRL-based automated nonlinear drone mobility control algorithm can be designed, evaluated, and visualized. Moreover, many obstacles exist which is harmful for linear trajectory control in real-world battlefield scenarios. Thus, our proposed autonomous nonlinear drone mobility control algorithm utilizes situation-aware components those are implemented with a Raycast function in Unity virtual scenarios. Based on the gathered situation-aware information, the drone can autonomously and nonlinearly adjust its trajectory during flight. Therefore, this approach is obviously beneficial for avoiding obstacles in obstacle-deployed battlefields. Our visualization-based performance evaluation shows that the proposed algorithm is superior from the other linear mobility control algorithms.
translated by 谷歌翻译
This paper proposes a new regularization algorithm referred to as macro-block dropout. The overfitting issue has been a difficult problem in training large neural network models. The dropout technique has proven to be simple yet very effective for regularization by preventing complex co-adaptations during training. In our work, we define a macro-block that contains a large number of units from the input to a Recurrent Neural Network (RNN). Rather than applying dropout to each unit, we apply random dropout to each macro-block. This algorithm has the effect of applying different drop out rates for each layer even if we keep a constant average dropout rate, which has better regularization effects. In our experiments using Recurrent Neural Network-Transducer (RNN-T), this algorithm shows relatively 4.30 % and 6.13 % Word Error Rates (WERs) improvement over the conventional dropout on LibriSpeech test-clean and test-other. With an Attention-based Encoder-Decoder (AED) model, this algorithm shows relatively 4.36 % and 5.85 % WERs improvement over the conventional dropout on the same test sets.
translated by 谷歌翻译
Affect understanding capability is essential for social robots to autonomously interact with a group of users in an intuitive and reciprocal way. However, the challenge of multi-person affect understanding comes from not only the accurate perception of each user's affective state (e.g., engagement) but also the recognition of the affect interplay between the members (e.g., joint engagement) that presents as complex, but subtle, nonverbal exchanges between them. Here we present a novel hybrid framework for identifying a parent-child dyad's joint engagement by combining a deep learning framework with various video augmentation techniques. Using a dataset of parent-child dyads reading storybooks together with a social robot at home, we first train RGB frame- and skeleton-based joint engagement recognition models with four video augmentation techniques (General Aug, DeepFake, CutOut, and Mixed) applied datasets to improve joint engagement classification performance. Second, we demonstrate experimental results on the use of trained models in the robot-parent-child interaction context. Third, we introduce a behavior-based metric for evaluating the learned representation of the models to investigate the model interpretability when recognizing joint engagement. This work serves as the first step toward fully unlocking the potential of end-to-end video understanding models pre-trained on large public datasets and augmented with data augmentation and visualization techniques for affect recognition in the multi-person human-robot interaction in the wild.
translated by 谷歌翻译