增加片上光子神经网络(PNN)的层数对于改善其模型性能至关重要。但是,网络隐藏层的连续级联导致更大的集成光子芯片区域。为了解决此问题,我们提出了光学神经常规微分方程(ON-ON-ON-OD-ON-OD-ON-OD-ON-OD-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ODINE),该架构用光ODE求解器参数化了隐藏层的连续动力学。 On-Ode包括PNN,然后是光子积分器和光反馈回路,可以配置为代表残留的神经网络(RESNET)和复发性神经网络,并有效地降低了芯片面积占用率。对于基于干扰的光电非线性隐藏层,数值实验表明,单个隐藏层ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ONE表示与图像分类任务中的两层光学重新系统大致相同。此外,Onode提高了基于衍射的全光线性隐藏层的模型分类精度。 On-Eod的时间依赖性动力学属性进一步应用于高精度的轨迹预测。
translated by 谷歌翻译
在本文中,我们考虑了颜色加式双相机系统,并提出了一个端到端的卷积神经网络,以有效且具有成本效益的方式使图像对齐和融合图像。我们的方法将跨域和跨尺度图像作为输入,因此综合了HR着色结果,以促进单相机成像系统中时空分辨率和色彩深度之间的权衡。与以前的着色方法相反,我们的功能可以适应具有独特时空分辨率的色彩和单色相机,从而使实际应用中的灵活性和鲁棒性。我们方法的关键要素是一个跨相机比对模块,该模块生成跨域图像对齐的多尺度对应关系。通过在各种数据集和多个设置上进行广泛的实验,我们验证了方法的灵活性和有效性。值得注意的是,我们的方法始终取得了实质性改进,即在最新方法上,大约10dB PSNR增益。代码为:https://github.com/indigopurple/ccdc
translated by 谷歌翻译
我们提出了离散的Langevin提案(DLP),这是一种简单且可扩展的基于梯度的建议,用于对复杂的高维离散分布进行采样。与基于Gibbs采样的方法相反,DLP能够单个步骤并行更新所有坐标,并且更改的幅度由步骤尺寸控制。这允许在高维且密切相关的变量的空间中进行廉价,有效的探索。我们通过证明其固定分布的渐近偏置对于对数季度分布而言是零,并且对于接近对数季度的分布而言,我们证明了DLP的效率为零。使用DLP,我们开发了几种采样算法的变体,包括未经调整的,大都市调整后的,随机和预处理版本。DLP在各种任务上都优于许多受欢迎的替代方案,包括ISING模型,受限的Boltzmann机器,基于深层的基于能量的模型,二进制神经网络和语言生成。
translated by 谷歌翻译
尽管低精度优化已被广泛用于加速深度学习,但低精度抽样仍未得到探索。结果,尽管在许多大规模的情况下,采样是不可行的,尽管对神经网络的概括和不确定性估计给予了显着的好处。在本文中,我们提供了低精确的随机梯度Langevin Dynamics(SGLD)的首次研究,这表明其成本可以大大降低而无需牺牲性能,因为它的内在能力处理了系统噪声。我们证明,低精度SGLD与完全精确的梯度累加器的收敛性比在强凸设置中的SGD对应物的量化误差的影响较小。为了进一步启用低精度梯度蓄能器,我们为SGLD开发了一个新的量化功能,该功能保留了每个更新步骤中的差异。我们证明,低精确的SGLD与完整精确的SGLD相当,只有8位在各种深度学习任务上。
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a language model for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.
translated by 谷歌翻译
Transformer has achieved impressive successes for various computer vision tasks. However, most of existing studies require to pretrain the Transformer backbone on a large-scale labeled dataset (e.g., ImageNet) for achieving satisfactory performance, which is usually unavailable for medical images. Additionally, due to the gap between medical and natural images, the improvement generated by the ImageNet pretrained weights significantly degrades while transferring the weights to medical image processing tasks. In this paper, we propose Bootstrap Own Latent of Transformer (BOLT), a self-supervised learning approach specifically for medical image classification with the Transformer backbone. Our BOLT consists of two networks, namely online and target branches, for self-supervised representation learning. Concretely, the online network is trained to predict the target network representation of the same patch embedding tokens with a different perturbation. To maximally excavate the impact of Transformer from limited medical data, we propose an auxiliary difficulty ranking task. The Transformer is enforced to identify which branch (i.e., online/target) is processing the more difficult perturbed tokens. Overall, the Transformer endeavours itself to distill the transformation-invariant features from the perturbed tokens to simultaneously achieve difficulty measurement and maintain the consistency of self-supervised representations. The proposed BOLT is evaluated on three medical image processing tasks, i.e., skin lesion classification, knee fatigue fracture grading and diabetic retinopathy grading. The experimental results validate the superiority of our BOLT for medical image classification, compared to ImageNet pretrained weights and state-of-the-art self-supervised learning approaches.
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
Digital engineering transformation is a crucial process for the engineering paradigm shifts in the fourth industrial revolution (4IR), and artificial intelligence (AI) is a critical enabling technology in digital engineering transformation. This article discusses the following research questions: What are the fundamental changes in the 4IR? More specifically, what are the fundamental changes in engineering? What is digital engineering? What are the main uncertainties there? What is trustworthy AI? Why is it important today? What are emerging engineering paradigm shifts in the 4IR? What is the relationship between the data-intensive paradigm and digital engineering transformation? What should we do for digitalization? From investigating the pattern of industrial revolutions, this article argues that ubiquitous machine intelligence (uMI) is the defining power brought by the 4IR. Digitalization is a condition to leverage ubiquitous machine intelligence. Digital engineering transformation towards Industry 4.0 has three essential building blocks: digitalization of engineering, leveraging ubiquitous machine intelligence, and building digital trust and security. The engineering design community at large is facing an excellent opportunity to bring the new capabilities of ubiquitous machine intelligence and trustworthy AI principles, as well as digital trust, together in various engineering systems design to ensure the trustworthiness of systems in Industry 4.0.
translated by 谷歌翻译
Surgical robot automation has attracted increasing research interest over the past decade, expecting its huge potential to benefit surgeons, nurses and patients. Recently, the learning paradigm of embodied AI has demonstrated promising ability to learn good control policies for various complex tasks, where embodied AI simulators play an essential role to facilitate relevant researchers. However, existing open-sourced simulators for surgical robot are still not sufficiently supporting human interactions through physical input devices, which further limits effective investigations on how human demonstrations would affect policy learning. In this paper, we study human-in-the-loop embodied intelligence with a new interactive simulation platform for surgical robot learning. Specifically, we establish our platform based on our previously released SurRoL simulator with several new features co-developed to allow high-quality human interaction via an input device. With these, we further propose to collect human demonstrations and imitate the action patterns to achieve more effective policy learning. We showcase the improvement of our simulation environment with the designed new features and tasks, and validate state-of-the-art reinforcement learning algorithms using the interactive environment. Promising results are obtained, with which we hope to pave the way for future research on surgical embodied intelligence. Our platform is released and will be continuously updated in the website: https://med-air.github.io/SurRoL/
translated by 谷歌翻译