现代的多层感知器(MLP)模型在不自我注意力的情况下学习视觉表现方面显示了竞争成果。但是,现有的MLP模型不擅长捕获本地细节,并且缺乏人类配置的先验知识,这限制了其骨骼表示学习的模型能力。为了解决这些问题,我们提出了一个名为GraphMLP的简单而有效的图形增强的MLP样结构,该体系结构将MLP和图形卷积网络(GCN)组合在3D人类姿势估计的全球 - 局部 - 单位图形统一体系中。GraphMLP将人体的图结构结合到MLP模型中,以满足域特异性需求,同时允许局部和全局空间相互作用。广泛的实验表明,所提出的GraphMLP在两个数据集(即Human3.6M和MPI-INF-3DHP)上实现了最先进的性能。我们的源代码和预估计的模型将公开可用。
translated by 谷歌翻译
近年来,已经通过对比学习方法的进展来开发了基于骨架的动作识别的自我监督的代表学习。现有的对比学习方法使用正常的增强来构建类似的正样品,这限制了探索新颖运动模式的能力。在本文中,为了更好地利用极端增强引入的运动模式,提出了利用对自我监督动作表示(AIMCLR)的丰富信息挖掘的对比学习框架。首先,提出了极端的增强和基于能量的注意力指导模块(EADM)来获得各种阳性样本,这带来了新的运动模式来改善学习陈述的普遍性。其次,由于直接使用极端增强可能无法提高由于原始身份的剧烈变化导致的性能,因此提出了双分配发散最小化损失(D $ ^ 3 $ M损失),以最大限度地减少更温和的分配分配大大地。第三,提出了最近的邻居挖掘(NNM)以进一步扩展正样品以使丰富的信息挖掘过程更合理。 NTU RGB + D 60的详尽实验,PKU-MMD,NTU RGB + D 120数据集已经验证,我们的AIMCLR可以在各种评估协议下对最先进的方法进行有利的方法,以观察到更高质量的作用表示。我们的代码可在https://github.com/levigty/aimclr中找到。
translated by 谷歌翻译
尽管来自视频的3D人类姿势估算的巨大进展,但是充分利用冗余2D姿势序列来学习用于生成一个3D姿势的代表表示的开放问题。为此,我们提出了一种改进的基于变压器的架构,称为冲压变压器,简单地有效地将长期的2D联合位置升高到单个3D姿势。具体地,采用Vanilla变压器编码器(VTE)来模拟2D姿势序列的远程依赖性。为了减少序列的冗余,vte的前馈网络中的完全连接的层被冲击卷积替换,以逐步缩小序列长度并从本地上下文聚合信息。修改的VTE称为STRIVEIVERCHER ENCODER(STE),其构建在VTE的输出时。 STE不仅有效地将远程信息聚集到分层全球和本地时尚的单载体表示,而且显着降低了计算成本。此外,全序列和单个目标帧尺度都设计了全序,分别适用于VTE和ST的输出。该方案与单个目标帧监督结合施加额外的时间平滑度约束,因此有助于产生更平滑和更准确的3D姿势。所提出的轮廓变压器在两个具有挑战性的基准数据集,Human3.6M和HumanVa-I中进行评估,并通过更少的参数实现最先进的结果。代码和模型可用于\ url {https://github.com/vegetebird/stridedtransformer-pose3d}。
translated by 谷歌翻译
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
In this work, we focus on instance-level open vocabulary segmentation, intending to expand a segmenter for instance-wise novel categories without mask annotations. We investigate a simple yet effective framework with the help of image captions, focusing on exploiting thousands of object nouns in captions to discover instances of novel classes. Rather than adopting pretrained caption models or using massive caption datasets with complex pipelines, we propose an end-to-end solution from two aspects: caption grounding and caption generation. In particular, we devise a joint Caption Grounding and Generation (CGG) framework based on a Mask Transformer baseline. The framework has a novel grounding loss that performs explicit and implicit multi-modal feature alignments. We further design a lightweight caption generation head to allow for additional caption supervision. We find that grounding and generation complement each other, significantly enhancing the segmentation performance for novel categories. We conduct extensive experiments on the COCO dataset with two settings: Open Vocabulary Instance Segmentation (OVIS) and Open Set Panoptic Segmentation (OSPS). The results demonstrate the superiority of our CGG framework over previous OVIS methods, achieving a large improvement of 6.8% mAP on novel classes without extra caption data. Our method also achieves over 15% PQ improvements for novel classes on the OSPS benchmark under various settings.
translated by 谷歌翻译
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight, which uses photon time-of-flight information encoded in light after multiple diffuse reflections. The under-sampled scanning data can facilitate fast imaging. However, the resulting reconstruction problem becomes a serious ill-posed inverse problem, the solution of which is of high possibility to be degraded due to noises and distortions. In this paper, we propose two novel NLOS reconstruction models based on curvature regularization, i.e., the object-domain curvature regularization model and the dual (i.e., signal and object)-domain curvature regularization model. Fast numerical optimization algorithms are developed relying on the alternating direction method of multipliers (ADMM) with the backtracking stepsize rule, which are further accelerated by GPU implementation. We evaluate the proposed algorithms on both synthetic and real datasets, which achieve state-of-the-art performance, especially in the compressed sensing setting. All our codes and data are available at https://github.com/Duanlab123/CurvNLOS.
translated by 谷歌翻译
Stance detection refers to the task of extracting the standpoint (Favor, Against or Neither) towards a target in given texts. Such research gains increasing attention with the proliferation of social media contents. The conventional framework of handling stance detection is converting it into text classification tasks. Deep learning models have already replaced rule-based models and traditional machine learning models in solving such problems. Current deep neural networks are facing two main challenges which are insufficient labeled data and information in social media posts and the unexplainable nature of deep learning models. A new pre-trained language model chatGPT was launched on Nov 30, 2022. For the stance detection tasks, our experiments show that ChatGPT can achieve SOTA or similar performance for commonly used datasets including SemEval-2016 and P-Stance. At the same time, ChatGPT can provide explanation for its own prediction, which is beyond the capability of any existing model. The explanations for the cases it cannot provide classification results are especially useful. ChatGPT has the potential to be the best AI model for stance detection tasks in NLP, or at least change the research paradigm of this field. ChatGPT also opens up the possibility of building explanatory AI for stance detection.
translated by 谷歌翻译
Motivated by the problem of matching vertices in two correlated Erd\H{o}s-R\'enyi graphs, we study the problem of matching two correlated Gaussian Wigner matrices. We propose an iterative matching algorithm, which succeeds in polynomial time as long as the correlation between the two Gaussian matrices does not vanish. Our result is the first polynomial time algorithm that solves a graph matching type of problem when the correlation is an arbitrarily small constant.
translated by 谷歌翻译
Existing solutions to network scheduling typically assume that the instantaneous link rates are completely known before a scheduling decision is made or consider a bandit setting where the accurate link quality is discovered only after it has been used for data transmission. In practice, the decision maker can obtain (relatively accurate) channel information, e.g., through beamforming in mmWave networks, right before data transmission. However, frequent beamforming incurs a formidable overhead in densely deployed mmWave WLANs. In this paper, we consider the important problem of throughput optimization with joint link probing and scheduling. The problem is challenging even when the link rate distributions are pre-known (the offline setting) due to the necessity of balancing the information gains from probing and the cost of reducing the data transmission opportunity. We develop an approximation algorithm with guaranteed performance when the probing decision is non-adaptive, and a dynamic programming based solution for the more challenging adaptive setting. We further extend our solutions to the online setting with unknown link rate distributions and develop a contextual-bandit based algorithm and derive its regret bound. Numerical results using data traces collected from real-world mmWave deployments demonstrate the efficiency of our solutions.
translated by 谷歌翻译