机器人通常不会以安全为主要问题创建。对比典型IT系统,私人系统依赖于安全性来处理安全方面。鉴于前者,诸如常见漏洞评分系统(CVS)之类的经典评分方法无法准确捕获机器人漏洞的严重程度。目前的研究工作侧重于创建一个开放,自由地访问机器人漏洞评分系统(RVSS),该系统(RVSS)考虑机器人中的主要相关问题,包括a)机器人安全方面,b)对给定漏洞,c)图书馆和第三个漏洞的下游影响的评估-Party评分评估和D)环境变量,例如自漏洞泄露或网络上的曝光率。最后,提供了与CVSS对比的RVSS的实验评估,并侧重于专注于机器人安全景观。
translated by 谷歌翻译
机器人在社会中取得了相关性,越来越越来越关注关键任务。尽管如此,机器人安全性被低估了。机器人安全性是一种复杂的景观,通常需要一个跨纪的横向落后的横向学科视角。要解决此问题,我们介绍了机器人安全框架(RSF),一种方法,用于在机器人中执行系统安全评估。我们提出,调整和开发特定术语,并提供了在四个主要层次(物理,网络,固件和应用程序)之后实现整体安全评估的指南。我们认为现代机器人应视为同样相关的内部和外部沟通安全。最后,我们倡导“通过默默无闻的安全”。我们得出结论,机器人中的安全领域值得进一步的研究努力。
translated by 谷歌翻译
This work presents a set of neural network (NN) models specifically designed for accurate and efficient fluid dynamics forecasting. In this work, we show how neural networks training can be improved by reducing data complexity through a modal decomposition technique called higher order dynamic mode decomposition (HODMD), which identifies the main structures inside flow dynamics and reconstructs the original flow using only these main structures. This reconstruction has the same number of samples and spatial dimension as the original flow, but with a less complex dynamics and preserving its main features. We also show the low computational cost required by the proposed NN models, both in their training and inference phases. The core idea of this work is to test the limits of applicability of deep learning models to data forecasting in complex fluid dynamics problems. Generalization capabilities of the models are demonstrated by using the same neural network architectures to forecast the future dynamics of four different multi-phase flows. Data sets used to train and test these deep learning models come from Direct Numerical Simulations (DNS) of these flows.
translated by 谷歌翻译
The field of robotics, and more especially humanoid robotics, has several established competitions with research oriented goals in mind. Challenging the robots in a handful of tasks, these competitions provide a way to gauge the state of the art in robotic design, as well as an indicator for how far we are from reaching human performance. The most notable competitions are RoboCup, which has the long-term goal of competing against a real human team in 2050, and the FIRA HuroCup league, in which humanoid robots have to perform tasks based on actual Olympic events. Having robots compete against humans under the same rules is a challenging goal, and, we believe that it is in the sport of archery that humanoid robots have the most potential to achieve it in the near future. In this work, we perform a first step in this direction. We present a humanoid robot that is capable of gripping, drawing and shooting a recurve bow at a target 10 meters away with considerable accuracy. Additionally, we show that it is also capable of shooting distances of over 50 meters.
translated by 谷歌翻译
In the absence of readily available labeled data for a given task and language, annotation projection has been proposed as one of the possible strategies to automatically generate annotated data which may then be used to train supervised systems. Annotation projection has often been formulated as the task of projecting, on parallel corpora, some labels from a source into a target language. In this paper we present T-Projection, a new approach for annotation projection that leverages large pretrained text2text language models and state-of-the-art machine translation technology. T-Projection decomposes the label projection task into two subtasks: (i) The candidate generation step, in which a set of projection candidates using a multilingual T5 model is generated and, (ii) the candidate selection step, in which the candidates are ranked based on translation probabilities. We evaluate our method in three downstream tasks and five different languages. Our results show that T-projection improves the average F1 score of previous methods by more than 8 points.
translated by 谷歌翻译
The evolution of wireless communications into 6G and beyond is expected to rely on new machine learning (ML)-based capabilities. These can enable proactive decisions and actions from wireless-network components to sustain quality-of-service (QoS) and user experience. Moreover, new use cases in the area of vehicular and industrial communications will emerge. Specifically in the area of vehicle communication, vehicle-to-everything (V2X) schemes will benefit strongly from such advances. With this in mind, we have conducted a detailed measurement campaign with the purpose of enabling a plethora of diverse ML-based studies. The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies, thus enabling a variety of different studies towards V2X. The datasets are labeled and sampled with a high time resolution. Furthermore, we make the data publicly available with all the necessary information to support the on-boarding of new researchers. We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage, as well as some hints at potential research studies.
translated by 谷歌翻译
This paper proposes a question-answering system that can answer questions whose supporting evidence is spread over multiple (potentially long) documents. The system, called Visconde, uses a three-step pipeline to perform the task: decompose, retrieve, and aggregate. The first step decomposes the question into simpler questions using a few-shot large language model (LLM). Then, a state-of-the-art search engine is used to retrieve candidate passages from a large collection for each decomposed question. In the final step, we use the LLM in a few-shot setting to aggregate the contents of the passages into the final answer. The system is evaluated on three datasets: IIRC, Qasper, and StrategyQA. Results suggest that current retrievers are the main bottleneck and that readers are already performing at the human level as long as relevant passages are provided. The system is also shown to be more effective when the model is induced to give explanations before answering a question. Code is available at \url{https://github.com/neuralmind-ai/visconde}.
translated by 谷歌翻译
Given the impact of language models on the field of Natural Language Processing, a number of Spanish encoder-only masked language models (aka BERTs) have been trained and released. These models were developed either within large projects using very large private corpora or by means of smaller scale academic efforts leveraging freely available data. In this paper we present a comprehensive head-to-head comparison of language models for Spanish with the following results: (i) Previously ignored multilingual models from large companies fare better than monolingual models, substantially changing the evaluation landscape of language models in Spanish; (ii) Results across the monolingual models are not conclusive, with supposedly smaller and inferior models performing competitively. Based on these empirical results, we argue for the need of more research to understand the factors underlying them. In this sense, the effect of corpus size, quality and pre-training techniques need to be further investigated to be able to obtain Spanish monolingual models significantly better than the multilingual ones released by large private companies, specially in the face of rapid ongoing progress in the field. The recent activity in the development of language technology for Spanish is to be welcomed, but our results show that building language models remains an open, resource-heavy problem which requires to marry resources (monetary and/or computational) with the best research expertise and practice.
translated by 谷歌翻译
We study inductive matrix completion (matrix completion with side information) under an i.i.d. subgaussian noise assumption at a low noise regime, with uniform sampling of the entries. We obtain for the first time generalization bounds with the following three properties: (1) they scale like the standard deviation of the noise and in particular approach zero in the exact recovery case; (2) even in the presence of noise, they converge to zero when the sample size approaches infinity; and (3) for a fixed dimension of the side information, they only have a logarithmic dependence on the size of the matrix. Differently from many works in approximate recovery, we present results both for bounded Lipschitz losses and for the absolute loss, with the latter relying on Talagrand-type inequalities. The proofs create a bridge between two approaches to the theoretical analysis of matrix completion, since they consist in a combination of techniques from both the exact recovery literature and the approximate recovery literature.
translated by 谷歌翻译
Visual object tracking under challenging conditions of motion and light can be hindered by the capabilities of conventional cameras, prone to producing images with motion blur. Event cameras are novel sensors suited to robustly perform vision tasks under these conditions. However, due to the nature of their output, applying them to object detection and tracking is non-trivial. In this work, we propose a framework to take advantage of both event cameras and off-the-shelf deep learning for object tracking. We show that reconstructing event data into intensity frames improves the tracking performance in conditions under which conventional cameras fail to provide acceptable results.
translated by 谷歌翻译