风险(OAR)的器官的分割是具有图像引导放射治疗的癌症治疗所需的前提。因此,分割任务的自动化是高临床相关性的。基于深度学习(DL)的医学图像分割是目前最成功的方法,但遭受背景类别和解剖学上给定的器官尺寸差异,这在头部和颈部(汉)区域中最严重。为了解决汉族地区特定的类别不平衡问题我们首先优化当前最好的通用分割框架的补丁大小,基于介绍的类不平衡测量,第二,介绍了课堂自适应骰子损失补偿高度不平衡的设置。补丁大小和损耗功能都是对类别不平衡有直接影响的参数,并且它们的优化导致骰子得分的3 \%增加了95%Hausdorff距离的22%,最后达到0.8美元\ PM0.15 $和3.17美元\ PM1.7 $ mm用于使用单个和简单的神经网络分割七汉机关的分割。补丁大小优化和类自适应骰子损耗均可在基于DL的基于DL的分段方法中简单集成,并允许提高类别不平衡分段任务的性能。
translated by 谷歌翻译
View-dependent effects such as reflections pose a substantial challenge for image-based and neural rendering algorithms. Above all, curved reflectors are particularly hard, as they lead to highly non-linear reflection flows as the camera moves. We introduce a new point-based representation to compute Neural Point Catacaustics allowing novel-view synthesis of scenes with curved reflectors, from a set of casually-captured input photos. At the core of our method is a neural warp field that models catacaustic trajectories of reflections, so complex specular effects can be rendered using efficient point splatting in conjunction with a neural renderer. One of our key contributions is the explicit representation of reflections with a reflection point cloud which is displaced by the neural warp field, and a primary point cloud which is optimized to represent the rest of the scene. After a short manual annotation step, our approach allows interactive high-quality renderings of novel views with accurate reflection flow. Additionally, the explicit representation of reflection flow supports several forms of scene manipulation in captured scenes, such as reflection editing, cloning of specular objects, reflection tracking across views, and comfortable stereo viewing. We provide the source code and other supplemental material on https://repo-sam.inria.fr/ fungraph/neural_catacaustics/
translated by 谷歌翻译
Support Vector Machines have been successfully used for one-class classification (OCSVM, SVDD) when trained on clean data, but they work much worse on dirty data: outliers present in the training data tend to become support vectors, and are hence considered "normal". In this article, we improve the effectiveness to detect outliers in dirty training data with a leave-out strategy: by temporarily omitting one candidate at a time, this point can be judged using the remaining data only. We show that this is more effective at scoring the outlierness of points than using the slack term of existing SVM-based approaches. Identified outliers can then be removed from the data, such that outliers hidden by other outliers can be identified, to reduce the problem of masking. Naively, this approach would require training N individual SVMs (and training $O(N^2)$ SVMs when iteratively removing the worst outliers one at a time), which is prohibitively expensive. We will discuss that only support vectors need to be considered in each step and that by reusing SVM parameters and weights, this incremental retraining can be accelerated substantially. By removing candidates in batches, we can further improve the processing time, although it obviously remains more costly than training a single SVM.
translated by 谷歌翻译
A major challenge when using k-means clustering often is how to choose the parameter k, the number of clusters. In this letter, we want to point out that it is very easy to draw poor conclusions from a common heuristic, the "elbow method". Better alternatives have been known in literature for a long time, and we want to draw attention to some of these easy to use options, that often perform better. This letter is a call to stop using the elbow method altogether, because it severely lacks theoretic support, and we want to encourage educators to discuss the problems of the method -- if introducing it in class at all -- and teach alternatives instead, while researchers and reviewers should reject conclusions drawn from the elbow method.
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
Active learning as a paradigm in deep learning is especially important in applications involving intricate perception tasks such as object detection where labels are difficult and expensive to acquire. Development of active learning methods in such fields is highly computationally expensive and time consuming which obstructs the progression of research and leads to a lack of comparability between methods. In this work, we propose and investigate a sandbox setup for rapid development and transparent evaluation of active learning in deep object detection. Our experiments with commonly used configurations of datasets and detection architectures found in the literature show that results obtained in our sandbox environment are representative of results on standard configurations. The total compute time to obtain results and assess the learning behavior can thereby be reduced by factors of up to 14 when comparing with Pascal VOC and up to 32 when comparing with BDD100k. This allows for testing and evaluating data acquisition and labeling strategies in under half a day and contributes to the transparency and development speed in the field of active learning for object detection.
translated by 谷歌翻译
Brain-inspired computing proposes a set of algorithmic principles that hold promise for advancing artificial intelligence. They endow systems with self learning capabilities, efficient energy usage, and high storage capacity. A core concept that lies at the heart of brain computation is sequence learning and prediction. This form of computation is essential for almost all our daily tasks such as movement generation, perception, and language. Understanding how the brain performs such a computation is not only important to advance neuroscience but also to pave the way to new technological brain-inspired applications. A previously developed spiking neural network implementation of sequence prediction and recall learns complex, high-order sequences in an unsupervised manner by local, biologically inspired plasticity rules. An emerging type of hardware that holds promise for efficiently running this type of algorithm is neuromorphic hardware. It emulates the way the brain processes information and maps neurons and synapses directly into a physical substrate. Memristive devices have been identified as potential synaptic elements in neuromorphic hardware. In particular, redox-induced resistive random access memories (ReRAM) devices stand out at many aspects. They permit scalability, are energy efficient and fast, and can implement biological plasticity rules. In this work, we study the feasibility of using ReRAM devices as a replacement of the biological synapses in the sequence learning model. We implement and simulate the model including the ReRAM plasticity using the neural simulator NEST. We investigate the effect of different device properties on the performance characteristics of the sequence learning model, and demonstrate resilience with respect to different on-off ratios, conductance resolutions, device variability, and synaptic failure.
translated by 谷歌翻译
This paper describes several improvements to a new method for signal decomposition that we recently formulated under the name of Differentiable Dictionary Search (DDS). The fundamental idea of DDS is to exploit a class of powerful deep invertible density estimators called normalizing flows, to model the dictionary in a linear decomposition method such as NMF, effectively creating a bijection between the space of dictionary elements and the associated probability space, allowing a differentiable search through the dictionary space, guided by the estimated densities. As the initial formulation was a proof of concept with some practical limitations, we will present several steps towards making it scalable, hoping to improve both the computational complexity of the method and its signal decomposition capabilities. As a testbed for experimental evaluation, we choose the task of frame-level piano transcription, where the signal is to be decomposed into sources whose activity is attributed to individual piano notes. To highlight the impact of improved non-linear modelling of sources, we compare variants of our method to a linear overcomplete NMF baseline. Experimental results will show that even in the absence of additional constraints, our models produce increasingly sparse and precise decompositions, according to two pertinent evaluation measures.
translated by 谷歌翻译
We introduce a novel way to incorporate prior information into (semi-) supervised non-negative matrix factorization, which we call differentiable dictionary search. It enables general, highly flexible and principled modelling of mixtures where non-linear sources are linearly mixed. We study its behavior on an audio decomposition task, and conduct an extensive, highly controlled study of its modelling capabilities.
translated by 谷歌翻译
The extensive surviving corpus of the ancient scholar Plutarch of Chaeronea (ca. 45-120 CE) also contains several texts which, according to current scholarly opinion, did not originate with him and are therefore attributed to an anonymous author Pseudo-Plutarch. These include, in particular, the work Placita Philosophorum (Quotations and Opinions of the Ancient Philosophers), which is extremely important for the history of ancient philosophy. Little is known about the identity of that anonymous author and its relation to other authors from the same period. This paper presents a BERT language model for Ancient Greek. The model discovers previously unknown statistical properties relevant to these literary, philosophical, and historical problems and can shed new light on this authorship question. In particular, the Placita Philosophorum, together with one of the other Pseudo-Plutarch texts, shows similarities with the texts written by authors from an Alexandrian context (2nd/3rd century CE).
translated by 谷歌翻译