激光间质热疗法(LITT)是一种新型的微创治疗方法,用于烧蚀颅内结构,以治疗肠内颞叶癫痫(MTLE)。 LITT之前和之后的感兴趣区域(ROI)分割将使自动化病变定量能够客观地评估治疗疗效。深度学习技术,例如卷积神经网络(CNN)是ROI分割的最新解决方案,但在培训过程中需要大量注释的数据。但是,从LITT等新兴治疗中收集大型数据集是不切实际的。在本文中,我们提出了一个进行性脑部病变合成框架(PAVAE),以扩大训练数据集的数量和多样性。具体而言,我们的框架由两个顺序网络组成:掩模合成网络和掩模引导的病变合成网络。为了更好地利用外部信息来在网络培训期间提供额外的监督,我们设计了条件嵌入块(CEB)和掩模嵌入块(MEB),以将掩模的固有条件编码到功能空间中。最后,使用原始和合成病变图像对分割网络进行训练,以评估所提出的框架的有效性。实验结果表明,我们的方法可以实现逼真的合成结果,并在传统数据增强技术之上提高下游分割任务的性能。
translated by 谷歌翻译
The ''Propose-Test-Release'' (PTR) framework is a classic recipe for designing differentially private (DP) algorithms that are data-adaptive, i.e. those that add less noise when the input dataset is nice. We extend PTR to a more general setting by privately testing data-dependent privacy losses rather than local sensitivity, hence making it applicable beyond the standard noise-adding mechanisms, e.g. to queries with unbounded or undefined sensitivity. We demonstrate the versatility of generalized PTR using private linear regression as a case study. Additionally, we apply our algorithm to solve an open problem from ''Private Aggregation of Teacher Ensembles (PATE)'' -- privately releasing the entire model with a delicate data-dependent analysis.
translated by 谷歌翻译
When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of black-box learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall system-level competence of a robot as it performs tasks in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.
translated by 谷歌翻译
One of the major challenges of machine translation (MT) is ambiguity, which can in some cases be resolved by accompanying context such as an image. However, recent work in multimodal MT (MMT) has shown that obtaining improvements from images is challenging, limited not only by the difficulty of building effective cross-modal representations but also by the lack of specific evaluation and training data. We present a new MMT approach based on a strong text-only MT model, which uses neural adapters and a novel guided self-attention mechanism and which is jointly trained on both visual masking and MMT. We also release CoMMuTE, a Contrastive Multilingual Multimodal Translation Evaluation dataset, composed of ambiguous sentences and their possible translations, accompanied by disambiguating images corresponding to each translation. Our approach obtains competitive results over strong text-only models on standard English-to-French benchmarks and outperforms these baselines and state-of-the-art MMT systems with a large margin on our contrastive test set.
translated by 谷歌翻译
Legal contracts, such as employment or lease agreements, are important documents as they govern the obligations and entitlements of the various contracting parties. However, these documents are typically long and written in legalese resulting in lots of manual hours spent in understanding them. In this paper, we address the task of summarizing legal contracts for each of the contracting parties, to enable faster reviewing and improved understanding of them. Specifically, we collect a dataset consisting of pairwise importance comparison annotations by legal experts for ~293K sentence pairs from lease agreements. We propose a novel extractive summarization system to automatically produce a summary consisting of the most important obligations, entitlements, and prohibitions in a contract. It consists of two modules: (1) a content categorize to identify sentences containing each of the categories (i.e., obligation, entitlement, and prohibition) for a party, and (2) an importance ranker to compare the importance among sentences of each category for a party to obtain a ranked list. The final summary is produced by selecting the most important sentences of a category for each of the parties. We demonstrate the effectiveness of our proposed system by comparing it against several text ranking baselines via automatic and human evaluation.
translated by 谷歌翻译
The UK COVID-19 Vocal Audio Dataset is designed for the training and evaluation of machine learning models that classify SARS-CoV-2 infection status or associated respiratory symptoms using vocal audio. The UK Health Security Agency recruited voluntary participants through the national Test and Trace programme and the REACT-1 survey in England from March 2021 to March 2022, during dominant transmission of the Alpha and Delta SARS-CoV-2 variants and some Omicron variant sublineages. Audio recordings of volitional coughs, exhalations, and speech were collected in the 'Speak up to help beat coronavirus' digital survey alongside demographic, self-reported symptom and respiratory condition data, and linked to SARS-CoV-2 test results. The UK COVID-19 Vocal Audio Dataset represents the largest collection of SARS-CoV-2 PCR-referenced audio recordings to date. PCR results were linked to 70,794 of 72,999 participants and 24,155 of 25,776 positive cases. Respiratory symptoms were reported by 45.62% of participants. This dataset has additional potential uses for bioacoustics research, with 11.30% participants reporting asthma, and 27.20% with linked influenza PCR test results.
translated by 谷歌翻译
Importance: Social determinants of health (SDOH) are known to be associated with increased risk of suicidal behaviors, but few studies utilized SDOH from unstructured electronic health record (EHR) notes. Objective: To investigate associations between suicide and recent SDOH, identified using structured and unstructured data. Design: Nested case-control study. Setting: EHR data from the US Veterans Health Administration (VHA). Participants: 6,122,785 Veterans who received care in the US VHA between October 1, 2010, and September 30, 2015. Exposures: Occurrence of SDOH over a maximum span of two years compared with no occurrence of SDOH. Main Outcomes and Measures: Cases of suicide deaths were matched with 4 controls on birth year, cohort entry date, sex, and duration of follow-up. We developed an NLP system to extract SDOH from unstructured notes. Structured data, NLP on unstructured data, and combining them yielded seven, eight and nine SDOH respectively. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression. Results: In our cohort, 8,821 Veterans committed suicide during 23,725,382 person-years of follow-up (incidence rate 37.18 /100,000 person-years). Our cohort was mostly male (92.23%) and white (76.99%). Across the six common SDOH as covariates, NLP-extracted SDOH, on average, covered 84.38% of all SDOH occurrences. All SDOH, measured by structured data and NLP, were significantly associated with increased risk of suicide. The SDOH with the largest effects was legal problems (aOR=2.67, 95% CI=2.46-2.89), followed by violence (aOR=2.26, 95% CI=2.11-2.43). NLP-extracted and structured SDOH were also associated with suicide. Conclusions and Relevance: NLP-extracted SDOH were always significantly associated with increased risk of suicide among Veterans, suggesting the potential of NLP in public health studies.
translated by 谷歌翻译
In spite of machine learning's rapid growth, its engineering support is scattered in many forms, and tends to favor certain engineering stages, stakeholders, and evaluation preferences. We envision a capability-based framework, which uses fine-grained specifications for ML model behaviors to unite existing efforts towards better ML engineering. We use concrete scenarios (model design, debugging, and maintenance) to articulate capabilities' broad applications across various different dimensions, and their impact on building safer, more generalizable and more trustworthy models that reflect human needs. Through preliminary experiments, we show capabilities' potential for reflecting model generalizability, which can provide guidance for ML engineering process. We discuss challenges and opportunities for capabilities' integration into ML engineering.
translated by 谷歌翻译
Multimodal integration of text, layout and visual information has achieved SOTA results in visually rich document understanding (VrDU) tasks, including relation extraction (RE). However, despite its importance, evaluation of the relative predictive capacity of these modalities is less prevalent. Here, we demonstrate the value of shared representations for RE tasks by conducting experiments in which each data type is iteratively excluded during training. In addition, text and layout data are evaluated in isolation. While a bimodal text and layout approach performs best (F1=0.684), we show that text is the most important single predictor of entity relations. Additionally, layout geometry is highly predictive and may even be a feasible unimodal approach. Despite being less effective, we highlight circumstances where visual information can bolster performance. In total, our results demonstrate the efficacy of training joint representations for RE.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译