Biomedical named entity recognition (BioNER) seeks to automatically recognize biomedical entities in natural language text, serving as a necessary foundation for downstream text mining tasks and applications such as information extraction and question answering. Manually labeling training data for the BioNER task is costly, however, due to the significant domain expertise required for accurate annotation. The resulting data scarcity causes current BioNER approaches to be prone to overfitting, to suffer from limited generalizability, and to address a single entity type at a time (e.g., gene or disease). We therefore propose a novel all-in-one (AIO) scheme that uses external data from existing annotated resources to improve generalization. We further present AIONER, a general-purpose BioNER tool based on cutting-edge deep learning and our AIO schema. We evaluate AIONER on 14 BioNER benchmark tasks and show that AIONER is effective, robust, and compares favorably to other state-of-the-art approaches such as multi-task learning. We further demonstrate the practical utility of AIONER in three independent tasks to recognize entity types not previously seen in training data, as well as the advantages of AIONER over existing methods for processing biomedical text at a large scale (e.g., the entire PubMed data).
translated by 谷歌翻译
Covid-19幸存者中很大一部分经历了经常影响日常生活的持续多系统症状,这种疾病被称为SARS-COV-2感染的长期或急性后静脉曲张。但是,识别长期的卷文章是具有挑战性的,因为文章是指使用各种较少常见的术语或根本不使用命名的条件。我们开发了一个迭代的人类机器学习框架,旨在有效利用可用的数据并最有效地利用人类标签。具体而言,我们的方法将数据编程与主动学习结合到了强大的集合模型中。在保留集上评估我们的模型表明了其他方法的灵敏度的三倍。我们将模型应用于PubMed来创建长期的共同集合,并证明(1)最长的卷vid文章在命名该条件时并不是用任何名称(2)来指代长的covid,在生物医学文献中最常使用的名称是长的,并且(3)长互联物与各种身体系统中的疾病有关。长期COVID系列每周更新,可在Litcovid门户网站上进行在线搜索:https://www.ncbi.nlm.nih.gov/research/coronavirus/docsum/docsum?filters=e_condition.longcondition.longcovid.longcovid
translated by 谷歌翻译
随着移动平台上对计算摄影和成像的需求不断增长,在相机系统中开发和集成了高级图像传感器与新型算法的发展。但是,缺乏用于研究的高质量数据以及从行业和学术界进行深入交流的难得的机会限制了移动智能摄影和成像(MIPI)的发展。为了弥合差距,我们介绍了第一个MIPI挑战,包括五个曲目,这些曲目着重于新型图像传感器和成像算法。在本文中,引入了RGBW关节Remosaic和Denoise,这是五个曲目之一,在全面分辨率上进行了RGBW CFA插值的插值。为参与者提供了一个新的数据集,其中包括70(培训)和15个(验证)高质量RGBW和拜耳对的场景。此外,对于每个场景,在0dB,24dB和42dB上提供了不同噪声水平的RGBW。所有数据均在室外和室内条件下使用RGBW传感器捕获。最终结果是使用PSNR,SSIM,LPIPS和KLD在内的客观指标评估的。本文提供了此挑战中所有模型的详细描述。有关此挑战的更多详细信息以及数据集的链接,请访问https://github.com/mipi-challenge/mipi2022。
translated by 谷歌翻译
随着移动平台上对计算摄影和成像的需求不断增长,在相机系统中开发和集成了高级图像传感器与新型算法的发展。但是,缺乏用于研究的高质量数据以及从行业和学术界进行深入交流的难得的机会限制了移动智能摄影和成像(MIPI)的发展。为了弥合差距,我们引入了第一个MIPI挑战,其中包括五个专注于新型图像传感器和成像算法的曲目。在本文中,引入了RGBW关节融合和Denoise,这是五个曲目之一,其中一条致力于将Binning模式RGBW融合到拜耳。为参与者提供了一个新的数据集,其中包括70(培训)和15个(验证)高质量RGBW和拜耳对的场景。此外,对于每个场景,在24dB和42dB处提供不同噪声水平的RGBW。所有数据均在室外和室内条件下使用RGBW传感器捕获。最终结果使用客观指标,包括PSNR,SSIM},LPIPS和KLD评估。本文提供了此挑战中所有模型的详细描述。有关此挑战的更多详细信息以及数据集的链接,请访问https://github.com/mipi-challenge/mipi2022。
translated by 谷歌翻译
随着移动平台上对计算摄影和成像的需求不断增长,在相机系统中开发和集成了高级图像传感器与新型算法的发展。但是,缺乏用于研究的高质量数据以及从行业和学术界进行深入交流的难得的机会限制了移动智能摄影和成像(MIPI)的发展。为了弥合差距,我们引入了第一个MIPI挑战,其中包括五个专注于新型图像传感器和成像算法的曲目。在本文中,引入了QUAD Remosaic和Denoise,这是五个曲目之一,在完全分辨率上进行了四QFA插值向拜耳进行插值。为参与者提供了一个新的数据集,包括70(培训)和15个(验证)高品质四边形和拜耳对的场景。此外,对于每个场景,在0dB,24dB和42dB上提供了不同噪声水平的四边形。所有数据均在室外和室内条件下使用四边形传感器捕获。最终结果使用客观指标,包括PSNR,SSIM,LPIPS和KLD。本文提供了此挑战中所有模型的详细描述。有关此挑战的更多详细信息以及数据集的链接,请访问https://github.com/mipi-challenge/mipi2022。
translated by 谷歌翻译
随着对移动平台上对计算摄影和成像的需求不断增长,在相机系统中开发和集成了高级图像传感器与相机系统中新型算法。但是,缺乏用于研究的高质量数据以及从行业和学术界进行深入交流的难得的机会限制了移动智能摄影和成像(MIPI)的发展。为了弥合差距,我们介绍了第一个MIPI挑战,包括五个曲目,这些曲目着重于新型图像传感器和成像算法。在本文中,引入了RGB+TOF深度完成,这是五个曲目之一,其中一条介绍了RGB传感器和TOF传感器(带有点照明)的融合。为参与者提供了一个名为TetrasRGBD的新数据集,其中包含18k对高质量合成RGB+DEPTH训练数据和2.3k对来自混合源的测试数据。所有数据均在室内场景中收集。我们要求所有方法的运行时间都应在桌面GPU上实时。最终结果是使用客观指标和平均意见评分(MOS)主观评估的。本文提供了此挑战中所有模型的详细描述。有关此挑战的更多详细信息以及数据集的链接,请访问https://github.com/mipi-challenge/mipi2022。
translated by 谷歌翻译
随着移动平台上对计算摄影和成像的需求不断增长,在相机系统中开发和集成了高级图像传感器与新型算法的发展。但是,缺乏用于研究的高质量数据以及从行业和学术界进行深入交流的难得的机会限制了移动智能摄影和成像(MIPI)的发展。为了弥合差距,我们介绍了第一个MIPI挑战,包括五个曲目,这些曲目着重于新型图像传感器和成像算法。在本文中,我们总结并审查了MIPI 2022上的分配摄像头(UDC)图像恢复轨道。总共,成功注册了167名参与者,并在最终测试阶段提交了19个团队。在这项挑战中开发的解决方案在播放摄像头映像修复局上实现了最新的性能。本文提供了此挑战中所有模型的详细描述。有关此挑战的更多详细信息以及数据集的链接,请访问https://github.com/mipi-challenge/mipi2022。
translated by 谷歌翻译
由于缺乏低资源语言的语料库,当前的对话生成作品主要集中在英语上。在本文中,我们介绍了MDIA,这是第一个大规模的多语言基准,用于跨低资源语言进行对话生成。它涵盖了19个语言家庭中46种语言的现实生活对话。我们介绍通过微调多语言,非拨号的预训练的模型MT5以及以英语为中心的,以对话为中心的预训练的预训练的聊天机器人对话,获得了基线结果。结果表明,基于MT5的模型在Sacrebleu和Bertscore上的表现更好,但在多样性方面的性能较差。即使在几乎没有射击和零拍的场景中发现了有希望的结果,但英语和其他语言的一代质量之间存在很大的差距。我们希望MDIA的发布可以鼓励更多关于多语言对话生成的作品,以促进语言多样性。
translated by 谷歌翻译
The state-of-the-art language model-based automatic metrics, e.g. BARTScore, benefiting from large-scale contextualized pre-training, have been successfully used in a wide range of natural language generation (NLG) tasks, including machine translation, text summarization, and data-to-text. Recent studies show that considering both major errors (e.g. mistranslated tokens) and minor errors (e.g. imperfections in fluency) can produce high-quality human judgments. This inspires us to approach the final goal of the evaluation metrics (human-like evaluations) by automatic error analysis. To this end, we augment BARTScore by incorporating the human-like error analysis strategies, namely BARTScore++, where the final score consists of both the evaluations of major errors and minor errors. Experimental results show that BARTScore++ can consistently improve the performance of vanilla BARTScore and outperform existing top-scoring metrics in 20 out of 25 test settings. We hope our technique can also be extended to other pre-trained model-based metrics. We will release our code and scripts to facilitate the community.
translated by 谷歌翻译
我们描述了JD Explore Academy对WMT 2022共享的一般翻译任务的提交。我们参加了所有高资源曲目和一条中型曲目,包括中文英语,德语英语,捷克语英语,俄语 - 英语和日语英语。我们通过扩大两个主要因素,即语言对和模型大小,即\ textbf {vega-mt}系统来推动以前的工作的极限 - 进行翻译的双向培训。至于语言对,我们将“双向”扩展到“多向”设置,涵盖所有参与语言,以利用跨语言的常识,并将其转移到下游双语任务中。至于型号尺寸,我们将变压器限制到拥有近47亿参数的极大模型,以完全增强我们VEGA-MT的模型容量。此外,我们采用数据增强策略,例如单语数据的循环翻译以及双语和单语数据的双向自我训练,以全面利用双语和单语言数据。为了使我们的Vega-MT适应通用域测试集,设计了概括调整。根据受约束系统的官方自动分数,根据图1所示的sacrebleu,我们在{zh-en(33.5),en-zh(49.7)(49.7),de-en(33.7)上获得了第一名-de(37.8),CS-EN(54.9),En-CS(41.4)和En-Ru(32.7)},在{ru-en(45.1)和Ja-en(25.6)}和第三名上的第二名和第三名在{en-ja(41.5)}上; W.R.T彗星,我们在{zh-en(45.1),en-zh(61.7),de-en(58.0),en-de(63.2),cs-en(74.7),ru-en(ru-en(ru-en)上,我们获得了第一名64.9),en-ru(69.6)和en-ja(65.1)},分别在{en-cs(95.3)和ja-en(40.6)}上的第二名。将发布模型,以通过GitHub和Omniforce平台来促进MT社区。
translated by 谷歌翻译