Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
联合学习(FL)已成为解决数据筒仓问题的实用解决方案,而不会损害用户隐私。它的一种变体垂直联合学习(VFL)最近引起了人们的关注,因为VFL与企业对利用更有价值的功能的需求相匹配,以构建更好的机器学习模型,同时保留用户隐私。当前在VFL中的工作集中于为特定VFL算法开发特定的保护或攻击机制。在这项工作中,我们提出了一个评估框架,该框架提出了隐私 - 私人评估问题。然后,我们将此框架作为指南,以全面评估针对三种广泛依据的VFL算法的大多数最先进的隐私攻击的广泛保护机制。这些评估可以帮助FL从业人员在特定要求下选择适当的保护机制。我们的评估结果表明:模型反转和大多数标签推理攻击可能会因现有保护机制而挫败;很难防止模型完成(MC)攻击,这需要更高级的MC靶向保护机制。根据我们的评估结果,我们为提高VFL系统的隐私保护能力提供具体建议。
translated by 谷歌翻译
最近的蒙版图像建模(MIM)在自我监督学习(SSL)中受到了很多关注,该学习要求目标模型恢复输入图像的掩盖部分。尽管基于MIM的预训练方法在转移到许多下游任务时达到了新的最新性能,但可视化表明,与基于基于对比性学习预训练相比,学习的表示形式不可分割,尤其是相比。这激发了我们思考MIM预培训表示的线性可分离性是否可以进一步改善,从而改善了训练的性能。由于MIM和对比度学习倾向于利用不同的数据增强和培训策略,因此将这两个借口任务结合起来并不是微不足道的。在这项工作中,我们提出了一个新颖而灵活的预训练框架,名为Mimco,该框架通过两阶段的预培训结合了MIM和对比度学习。具体而言,MIMCO将预先训练的对比学习模型作为教师模型,并通过两种类型的学习目标进行了预培训:贴片级和图像级的重建损失。关于下游任务的广泛转移实验证明了我们的MIMCO预训练框架的出色表现。以VIT-S为例,当使用预先训练的MoCov3-Vit-S作为教师模型时,Mimco只需要100个时期的预训练时期即可达到Imagenet-1K上的82.53%Top-1 FineTuning精度,这表现优于表现最先进的自我监督学习对手。
translated by 谷歌翻译
深度学习模型已经实现了患者电子健康记录(EHR)的有希望的疾病预测。但是,大多数模型在I.I.D.下开发了假设未能考虑不可知的分布变化,从而降低了深度学习模型到分布(OOD)数据的概括能力。在这种情况下,将利用可能在不同环境中发生变化的虚假统计相关性,这可能会导致深度学习模型的次优性能。训练分布中存在过程和诊断之间的不稳定相关性可能会导致历史EHR与未来诊断之间的虚假相关性。为了解决这个问题,我们建议使用一种称为因果医疗保健嵌入(CHE)的因果表示学习方法。 CHE旨在通过消除诊断和程序之间的依赖性来消除虚假的统计关系。我们介绍了希尔伯特 - 史密特独立标准(HSIC),以衡量嵌入式诊断和程序特征之间的独立性。基于因果观点分析,我们执行样本加权技术,以摆脱这种虚假关系,以跨不同环境对EHR进行稳定学习。此外,我们提出的CHE方法可以用作灵活的插件模块,可以增强EHR上现有的深度学习模型。在两个公共数据集和五个最先进的基线上进行了广泛的实验表明,CHE可以通过大幅度提高深度学习模型对分布数据的预测准确性。此外,可解释性研究表明,CHE可以成功利用因果结构来反映历史记录对预测的更合理贡献。
translated by 谷歌翻译
联合学习(FL)使独立方能够在保护数据隐私的同时协作建立机器学习(ML)模型。 FL的变体垂直联合学习(VFL)最近引起了人们的注意,因为VFL与企业对利用更有价值的功能的需求相匹配,以实现更好的模型性能而不会损害数据隐私。但是,传统的VFL可能会陷入数据缺陷,因为它只能用标签来利用标签的对准​​样品(属于不同的各方),而通常将大多数未对齐和未标记的样品均未使用。数据缺乏阻碍了联邦的努力。在这项工作中,我们提出了一个联合的混合自我监督的学习框架,即Fedhssl,以利用参与者的所有可用数据(包括未对准和未标记的样本)来培训联合VFL模型。 FEDHSSL的核心思想是利用各方之间对齐的样本的跨党派观点(即分散特征)和各方的本地观点(即增强)来提高通过SSL(SSL)的表示能力(例如,simsiam)。 FEDHSSL进一步利用各方共享的通用特征,以通过部分模型聚合来提高联合模型的性能。我们从经验上证明,与基线方法相比,我们的FEDHSSL实现了显着的性能增长,尤其是当标记样品数量较小时。我们对FedHSSL提供有关隐私泄漏的深入分析,这在现有的自我监督的VFL作品中很少讨论。我们研究了FEDHSSL的保护机制。结果表明,我们的保护可以阻止最先进的标签推理攻击。
translated by 谷歌翻译
3D医学图像分割中卷积神经网络(CNN)的成功取决于大量的完全注释的3D体积,用于训练,这些训练是耗时且劳动力密集的。在本文中,我们建议在3D医学图像中只有7个点注释分段目标,并设计一个两阶段弱监督的学习框架PA-SEG。在第一阶段,我们采用大地距离变换来扩展种子点以提供更多的监督信号。为了在培训期间进一步处理未注释的图像区域,我们提出了两种上下文正则化策略,即多视图条件随机场(MCRF)损失和差异最小化(VM)损失,其中第一个鼓励具有相似特征的像素以具有一致的标签,第二个分别可以最大程度地减少分段前景和背景的强度差异。在第二阶段,我们使用在第一阶段预先训练的模型获得的预测作为伪标签。为了克服伪标签中的噪音,我们引入了一种自我和交叉监测(SCM)策略,该策略将自我训练与跨知识蒸馏(CKD)结合在主要模型和辅助模型之间,该模型从彼此生成的软标签中学习。在公共数据集的前庭造型瘤(VS)分割和脑肿瘤分割(BRAT)上的实验表明,我们在第一阶段训练的模型优于现有的最先进的弱监督方法,并在使用SCM之后,以提供其他scm来获得其他额外的scm培训,与Brats数据集中完全有监督的对应物相比,该模型可以实现竞争性能。
translated by 谷歌翻译
稀疏奖励学习通常在加强学习(RL)方面效率低下。 Hindsight Experience重播(她)已显示出一种有效的解决方案,可以处理低样本效率,这是由于目标重新标记而导致的稀疏奖励效率。但是,她仍然有一个隐含的虚拟阳性稀疏奖励问题,这是由于实现目标而引起的,尤其是对于机器人操纵任务而言。为了解决这个问题,我们提出了一种新型的无模型连续RL算法,称为Relay-HER(RHER)。提出的方法首先分解并重新布置原始的长马任务,以增量复杂性为新的子任务。随后,多任务网络旨在以复杂性的上升顺序学习子任务。为了解决虚拟阳性的稀疏奖励问题,我们提出了一种随机混合的探索策略(RME),在该策略中,在复杂性较低的人的指导下,较高复杂性的子任务的实现目标很快就会改变。实验结果表明,在五个典型的机器人操纵任务中,与香草盖相比,RHER样品效率的显着提高,包括Push,Pickandplace,抽屉,插入物和InstaclePush。提出的RHER方法还应用于从头开始的物理机器人上的接触式推送任务,成功率仅使用250集达到10/10。
translated by 谷歌翻译
建模用户从历史行为中的动态偏好在于现代推荐系统的核心。由于用户兴趣的多样性,最近的进步建议多功能网络将历史行为编码为多个兴趣向量。在实际情况下,通常会一起检索相应的捕获兴趣项目,以获取曝光并收集到培训数据中,从而产生兴趣之间的依赖性。不幸的是,多息网络可能错误地集中在被捕获的利益之间的微妙依赖性上。被这些依赖性误导了,捕获了无关的利益和目标之间的虚假相关性,从而导致训练和测试分布不匹配时预测结果不稳定。在本文中,我们介绍了广泛使用的Hilbert-Schmidt独立标准(HSIC)来衡量被捕获的利益之间的独立性程度,并经验表明,HSIC的持续增加可能会损害模型性能。基于此,我们提出了一个新颖的多息网络,称为深稳定的多功能学习(Desmil),该网络试图通过学习权重以训练样本的学习权重消除捕获的兴趣中微妙的依赖性的影响因果关系。我们对公共建议数据集,大规模工业数据集和合成数据集进行了广泛的实验,这些数据集模拟了分布数据的数据集。实验结果表明,我们提出的Desmil的表现优于最先进的模型。此外,我们还进行了全面的模型分析,以揭示Desmil在一定程度上工作的原因。
translated by 谷歌翻译
联合学习(FL)旨在通过使客户能够在不共享其私有数据的情况下协作构建机器学习模型来保护数据隐私。然而,最近的作品表明FL容易受到基于梯度的数据恢复攻击。保存技术的品种已经利用,以进一步提升FL的隐私。尽管如此,它们的计算或通信昂贵(例如,同态加密)或遭受精密损失(例如,差异隐私)。在这项工作中,我们提出了\ textsc {fedcg},一个新颖的\下划线{fed} erated学习方法,它利用\下划线{c} onditional \下划线{g}良好的对手网络来实现高级隐私保护,同时仍然保持竞争模型表现。更具体地说,\ textsc {fedcg}将每个客户端的本地网络分解为私有提取器和公共分类器,并保留本地提取器保护隐私。而不是暴露作为隐私泄漏的罪魁祸首的提取器,而是将客户的生成器与服务器共享,以聚合旨在增强客户端网络性能的公共知识。广泛的实验表明,与基线FL方法相比,\ TextSc {FEDCG}可以实现竞争模型性能,数值隐私分析表明\ TextSC {FEDCG}具有高级别的隐私保存能力。
translated by 谷歌翻译
拟合科学数据的部分微分方程(PDE)可以用可解释的机制来代表各种以数学为导向的受试者的物理定律。从科学数据中发现PDE的数据驱动的发现蓬勃发展,作为对自然界中复杂现象进行建模的新尝试,但是当前实践的有效性通常受数据的稀缺性和现象的复杂性的限制。尤其是,从低质量数据中发现具有高度非线性系数的PDE在很大程度上已经不足。为了应对这一挑战,我们提出了一种新颖的物理学指导学习方法,该方法不仅可以编码观察知识,例如初始和边界条件,而且还包含了基本的物理原理和法律来指导模型优化。我们从经验上证明,所提出的方法对数据噪声和稀疏性更为强大,并且可以将估计误差较大。此外,我们第一次能够发现具有高度非线性系数的PDE。凭借有希望的性能,提出的方法推动了PDE的边界,这可以通过机器学习模型来进行科学发现。
translated by 谷歌翻译