We introduce submodel co-training, a regularization method related to co-training, self-distillation and stochastic depth. Given a neural network to be trained, for each sample we implicitly instantiate two altered networks, ``submodels'', with stochastic depth: we activate only a subset of the layers. Each network serves as a soft teacher to the other, by providing a loss that complements the regular loss provided by the one-hot label. Our approach, dubbed cosub, uses a single set of weights, and does not involve a pre-trained external model or temporal averaging. Experimentally, we show that submodel co-training is effective to train backbones for recognition tasks such as image classification and semantic segmentation. Our approach is compatible with multiple architectures, including RegNet, ViT, PiT, XCiT, Swin and ConvNext. Our training strategy improves their results in comparable settings. For instance, a ViT-B pretrained with cosub on ImageNet-21k obtains 87.4% top-1 acc. @448 on ImageNet-val.
translated by 谷歌翻译
通过与环境进行互动而没有任何外部监督是一个重要的挑战,可以通过与环境进行互动来学习各种技能。特别是,获得可以达到任何给定状态的目标条件的代理在许多应用中都有用。我们提出了一种新的方法,用于训练这种目标条件的代理,而没有任何外部奖励或任何领域知识。我们使用随机步行来训练可及性网络,以预测两个状态之间的相似性。然后,该可达性网络将用于构建目标记忆,其中包含过去的观察结果,这些观察值多样化且平衡。最后,我们训练一个目标条件条件的政策网络,其目标是从目标记忆中取得的目标,并通过可达性网络和目标记忆进行奖励。当代理商发现并学习新目标时,所有组件在整个培训中都进行了更新。我们将方法应用于连续的控制导航和机器人操纵任务。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
我们展示了如何通过基于关注的全球地图扩充任何卷积网络,以实现非本地推理。我们通过基于关注的聚合层替换为单个变压器块的最终平均池,重量贴片如何参与分类决策。我们使用2个参数(宽度和深度)使用简单的补丁卷积网络,使用简单的补丁的卷积网络插入学习的聚合层。与金字塔设计相比,该架构系列在所有层上维护输入补丁分辨率。它在准确性和复杂性之间产生了令人惊讶的竞争权衡,特别是在记忆消耗方面,如我们在各种计算机视觉任务所示:对象分类,图像分割和检测的实验所示。
translated by 谷歌翻译
信息检索是自然语言处理中的重要组成部分,用于知识密集型任务,如问题应答和事实检查。最近,信息检索已经看到基于神经网络的密集检索器的出现,作为基于术语频率的典型稀疏方法的替代方案。这些模型在数据集和任务中获得了最先进的结果,其中提供了大型训练集。但是,它们不会很好地转移到没有培训数据的新域或应用程序,并且通常因未经监督的术语 - 频率方法(例如BM25)的术语频率方法而言。因此,自然问题是如果没有监督,是否有可能训练密集的索取。在这项工作中,我们探讨了对比学习的限制,作为培训无人监督的密集检索的一种方式,并表明它导致强烈的检索性能。更确切地说,我们在15个数据集中出现了我们的模型胜过BM25的Beir基准测试。此外,当有几千例的示例可用时,我们显示微调我们的模型,与BM25相比,这些模型导致强大的改进。最后,当在MS-Marco数据集上微调之前用作预训练时,我们的技术在Beir基准上获得最先进的结果。
translated by 谷歌翻译
在这项工作中,我们提出了一种用于图像目标导航的内存调格方法。早期的尝试,包括基于RL的基于RL的方法和基于SLAM的方法的概括性能差,或者在姿势/深度传感器上稳定稳定。我们的方法基于一个基于注意力的端到端模型,该模型利用情节记忆来学习导航。首先,我们以自我监督的方式训练一个国家安置的网络,然后将其嵌入以前访问的状态中的代理商的记忆中。我们的导航政策通过注意机制利用了此信息。我们通过广泛的评估来验证我们的方法,并表明我们的模型在具有挑战性的吉布森数据集上建立了新的最新技术。此外,与相关工作形成鲜明对比的是,我们仅凭RGB输入就实现了这种令人印象深刻的性能,而无需访问其他信息,例如位置或深度。
translated by 谷歌翻译
Unsupervised image representations have significantly reduced the gap with supervised pretraining, notably with the recent achievements of contrastive learning methods. These contrastive methods typically work online and rely on a large number of explicit pairwise feature comparisons, which is computationally challenging. In this paper, we propose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise comparisons. Specifically, our method simultaneously clusters the data while enforcing consistency between cluster assignments produced for different augmentations (or "views") of the same image, instead of comparing features directly as in contrastive learning. Simply put, we use a "swapped" prediction mechanism where we predict the code of a view from the representation of another view. Our method can be trained with large and small batches and can scale to unlimited amounts of data. Compared to previous contrastive methods, our method is more memory efficient since it does not require a large memory bank or a special momentum network. In addition, we also propose a new data augmentation strategy, multi-crop, that uses a mix of views with different resolutions in place of two full-resolution views, without increasing the memory or compute requirements. We validate our findings by achieving 75.3% top-1 accuracy on ImageNet with ResNet-50, as well as surpassing supervised pretraining on all the considered transfer tasks.
translated by 谷歌翻译
Clustering is a class of unsupervised learning methods that has been extensively applied and studied in computer vision. Little work has been done to adapt it to the end-to-end training of visual features on large scale datasets. In this work, we present DeepCluster, a clustering method that jointly learns the parameters of a neural network and the cluster assignments of the resulting features. DeepCluster iteratively groups the features with a standard clustering algorithm, kmeans, and uses the subsequent assignments as supervision to update the weights of the network. We apply DeepCluster to the unsupervised training of convolutional neural networks on large datasets like ImageNet and YFCC100M. The resulting model outperforms the current state of the art by a significant margin on all the standard benchmarks.
translated by 谷歌翻译
We introduce Parseval networks, a form of deep neural networks in which the Lipschitz constant of linear, convolutional and aggregation layers is constrained to be smaller than 1. Parseval networks are empirically and theoretically motivated by an analysis of the robustness of the predictions made by deep neural networks when their input is subject to an adversarial perturbation. The most important feature of Parseval networks is to maintain weight matrices of linear and convolutional layers to be (approximately) Parseval tight frames, which are extensions of orthogonal matrices to non-square matrices. We describe how these constraints can be maintained efficiently during SGD. We show that Parseval networks match the state-of-the-art in terms of accuracy on CIFAR-10/100 and Street View House Numbers (SVHN), while being more robust than their vanilla counterpart against adversarial examples. Incidentally, Parseval networks also tend to train faster and make a better usage of the full capacity of the networks.
translated by 谷歌翻译