最近的基于学习的图像雨和噪声衰减的繁荣主要是由于精心设计的神经网络架构和大型标记数据集。但是,我们发现当前的图像雨和噪声去除方法导致图像的利用率低。为了减轻对大型标签数据集的依赖,我们提出了基于引入的补丁分析策略的任务驱动的图像雨和噪声(TRNR)。补丁分析策略提供了具有各种空间和统计特性的图像贴片,用于培训,并已被验证以增加图像的利用率。此外,补丁分析策略激励我们考虑学习图像雨和噪声去除任务驱动而不是数据驱动。因此,我们介绍了TRNR的N频率-K射击学习任务。每个N频率-K-Shot学习任务基于包含补丁分析策略采样的NK图像修补的微小数据集。 TRNR使神经网络能够从足够的数据以外的丰富N频率-K射击学习任务中学习。为了验证TRNR的有效性,我们建立了一个浅色多尺度残差网络(MSRESNet),具有约0.9米的参数来学习图像雨量拆卸,并使用简单的RESET与大约1.2M参数配合DNNET进行盲目高斯噪声删除,有一些图像(例如,20.0%的Rain100h培训赛车组)。实验结果表明,TRNR使MSRESNet能够从更少的图像中学到更好的学习。此外,MSRESNet和DNNET利用TRNR获得的性能比大多数最近的深度学习方法在大型标记数据集上受过训练的数据驱动。这些实验结果证实了所提出的TRNR的有效性和优越性。 TRNR的代码将很快公开。
translated by 谷歌翻译
平面扩散方程描述了大型自然运输过程,例如流体流动,传热和风运输。它们还用于光流量和灌注成像计算。我们开发机器学习模型,D ^ 2-sonata,基于随机的平流扩散方程构建,其预测驱动2d / 3d图像时间串联传输的速度和扩散场。特别是,我们的拟议模型包含一种运输模式,其中包括预期正常运输行为与观察到的运输之间的异常差异。在医学背景中,这种正常异常的分解可以例如用于量化病理学。具体地,我们的模型识别来自传输时间序列的平流和扩散贡献,并同时预测异常值场,以提供分解成正常和异常的平流和扩散行为。为了实现速度和扩散 - 张力场基础的速度和扩散张传导领域的提高性能,并为异常字段估计,我们创建了一个2D / 3D异常编码的平行扩散模拟器,允许监督学习。我们通过转移学习进一步在缺血性卒中患者的脑灌注数据集中进一步应用模型。广泛的比较表明,我们的模型成功地区分了来自普通脑区的行程病变(异常),同时重建底层速度和扩散张量场。
translated by 谷歌翻译
这项工作调查了鲁棒优化运输(OT)的形状匹配。具体而言,我们表明最近的OT溶解器改善了基于优化和深度学习方法的点云登记,以实惠的计算成本提高了准确性。此手稿从现代OT理论的实际概述开始。然后,我们为使用此框架进行形状匹配的主要困难提供解决方案。最后,我们展示了在广泛的具有挑战性任务上的运输增强的注册模型的性能:部分形状的刚性注册;基蒂数据集的场景流程估计;肺血管树的非参数和肺部血管树。我们基于OT的方法在准确性和可扩展性方面实现了基蒂的最先进的结果,并为挑战性的肺登记任务。我们还释放了PVT1010,这是一个新的公共数据集,1,010对肺血管树,具有密集的采样点。此数据集提供了具有高度复杂形状和变形的点云登记算法的具有挑战性用例。我们的工作表明,强大的OT可以为各种注册模型进行快速预订和微调,从而为计算机视觉工具箱提供新的键方法。我们的代码和数据集可在线提供:https://github.com/uncbiag/robot。
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) for semantic segmentation is a promising task freeing people from heavy annotation work. However, domain discrepancies in low-level image statistics and high-level contexts compromise the segmentation performance over the target domain. A key idea to tackle this problem is to perform both image-level and feature-level adaptation jointly. Unfortunately, there is a lack of such unified approaches for UDA tasks in the existing literature. This paper proposes a novel UDA pipeline for semantic segmentation that unifies image-level and feature-level adaptation. Concretely, for image-level domain shifts, we propose a global photometric alignment module and a global texture alignment module that align images in the source and target domains in terms of image-level properties. For feature-level domain shifts, we perform global manifold alignment by projecting pixel features from both domains onto the feature manifold of the source domain; and we further regularize category centers in the source domain through a category-oriented triplet loss and perform target domain consistency regularization over augmented target domain images. Experimental results demonstrate that our pipeline significantly outperforms previous methods. In the commonly tested GTA5$\rightarrow$Cityscapes task, our proposed method using Deeplab V3+ as the backbone surpasses previous SOTA by 8%, achieving 58.2% in mIoU.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
translated by 谷歌翻译
Transformer has achieved impressive successes for various computer vision tasks. However, most of existing studies require to pretrain the Transformer backbone on a large-scale labeled dataset (e.g., ImageNet) for achieving satisfactory performance, which is usually unavailable for medical images. Additionally, due to the gap between medical and natural images, the improvement generated by the ImageNet pretrained weights significantly degrades while transferring the weights to medical image processing tasks. In this paper, we propose Bootstrap Own Latent of Transformer (BOLT), a self-supervised learning approach specifically for medical image classification with the Transformer backbone. Our BOLT consists of two networks, namely online and target branches, for self-supervised representation learning. Concretely, the online network is trained to predict the target network representation of the same patch embedding tokens with a different perturbation. To maximally excavate the impact of Transformer from limited medical data, we propose an auxiliary difficulty ranking task. The Transformer is enforced to identify which branch (i.e., online/target) is processing the more difficult perturbed tokens. Overall, the Transformer endeavours itself to distill the transformation-invariant features from the perturbed tokens to simultaneously achieve difficulty measurement and maintain the consistency of self-supervised representations. The proposed BOLT is evaluated on three medical image processing tasks, i.e., skin lesion classification, knee fatigue fracture grading and diabetic retinopathy grading. The experimental results validate the superiority of our BOLT for medical image classification, compared to ImageNet pretrained weights and state-of-the-art self-supervised learning approaches.
translated by 谷歌翻译
Nearest-Neighbor (NN) classification has been proven as a simple and effective approach for few-shot learning. The query data can be classified efficiently by finding the nearest support class based on features extracted by pretrained deep models. However, NN-based methods are sensitive to the data distribution and may produce false prediction if the samples in the support set happen to lie around the distribution boundary of different classes. To solve this issue, we present P3DC-Shot, an improved nearest-neighbor based few-shot classification method empowered by prior-driven data calibration. Inspired by the distribution calibration technique which utilizes the distribution or statistics of the base classes to calibrate the data for few-shot tasks, we propose a novel discrete data calibration operation which is more suitable for NN-based few-shot classification. Specifically, we treat the prototypes representing each base class as priors and calibrate each support data based on its similarity to different base prototypes. Then, we perform NN classification using these discretely calibrated support data. Results from extensive experiments on various datasets show our efficient non-learning based method can outperform or at least comparable to SOTA methods which need additional learning steps.
translated by 谷歌翻译
In this paper, we investigate the joint device activity and data detection in massive machine-type communications (mMTC) with a one-phase non-coherent scheme, where data bits are embedded in the pilot sequences and the base station simultaneously detects active devices and their embedded data bits without explicit channel estimation. Due to the correlated sparsity pattern introduced by the non-coherent transmission scheme, the traditional approximate message passing (AMP) algorithm cannot achieve satisfactory performance. Therefore, we propose a deep learning (DL) modified AMP network (DL-mAMPnet) that enhances the detection performance by effectively exploiting the pilot activity correlation. The DL-mAMPnet is constructed by unfolding the AMP algorithm into a feedforward neural network, which combines the principled mathematical model of the AMP algorithm with the powerful learning capability, thereby benefiting from the advantages of both techniques. Trainable parameters are introduced in the DL-mAMPnet to approximate the correlated sparsity pattern and the large-scale fading coefficient. Moreover, a refinement module is designed to further advance the performance by utilizing the spatial feature caused by the correlated sparsity pattern. Simulation results demonstrate that the proposed DL-mAMPnet can significantly outperform traditional algorithms in terms of the symbol error rate performance.
translated by 谷歌翻译