许多现代的在线3D应用程序和视频游戏都依靠人脸的参数模型来创建可信的化身。但是,用参数模型手动复制某人的面部相似性是困难且耗时的。该任务的机器学习解决方案是非常可取的,但也充满挑战。本文提出了一种新的方法来解决所谓的面对参数问题(简称F2P),旨在重建单个图像的参数面。所提出的方法利用合成数据,域分解和域适应来解决解决F2P的多方面挑战。开源代码库说明了我们的主要观察结果,并提供了定量评估的手段。提出的方法在工业应用中证明是实际的。它提高了准确性并允许更有效的模型培训。这些技术有可能扩展到其他类型的参数模型。
translated by 谷歌翻译
许多现代的在线3D应用程序和视频游戏依靠人面孔的参数模型来创建可信的化身。但是,使用参数模型对某人的面部相似性进行手动复制是困难且耗时的。该任务的机器学习解决方案是非常可取的,但也充满挑战。本文提出了一种新的方法来解决所谓的面对参数问题(简称F2P),旨在重建单个图像的参数面。所提出的方法利用合成数据,域分解和域适应来解决解决F2P的多方面挑战。开源代码库说明了我们的主要观察结果,并提供了定量评估的手段。提出的方法在工业应用中证明是实际的。它提高了准确性并允许更有效的模型培训。这些技术有可能扩展到其他类型的参数模型。
translated by 谷歌翻译
A comprehensive pharmaceutical recommendation system was designed based on the patients and drugs features extracted from Drugs.com and Druglib.com. First, data from these databases were combined, and a dataset of patients and drug information was built. Secondly, the patients and drugs were clustered, and then the recommendation was performed using different ratings provided by patients, and importantly by the knowledge obtained from patients and drug specifications, and considering drug interactions. To the best of our knowledge, we are the first group to consider patients conditions and history in the proposed approach for selecting a specific medicine appropriate for that particular user. Our approach applies artificial intelligence (AI) models for the implementation. Sentiment analysis using natural language processing approaches is employed in pre-processing along with neural network-based methods and recommender system algorithms for modeling the system. In our work, patients conditions and drugs features are used for making two models based on matrix factorization. Then we used drug interaction to filter drugs with severe or mild interactions with other drugs. We developed a deep learning model for recommending drugs by using data from 2304 patients as a training set, and then we used data from 660 patients as our validation set. After that, we used knowledge from critical information about drugs and combined the outcome of the model into a knowledge-based system with the rules obtained from constraints on taking medicine.
translated by 谷歌翻译
Novel topological spin textures, such as magnetic skyrmions, benefit from their inherent stability, acting as the ground state in several magnetic systems. In the current study of atomic monolayer magnetic materials, reasonable initial guesses are still needed to search for those magnetic patterns. This situation underlines the need to develop a more effective way to identify the ground states. To solve this problem, in this work, we propose a genetic-tunneling-driven variance-controlled optimization approach, which combines a local energy minimizer back-end and a metaheuristic global searching front-end. This algorithm is an effective optimization solution for searching for magnetic ground states at extremely low temperatures and is also robust for finding low-energy degenerated states at finite temperatures. We demonstrate here the success of this method in searching for magnetic ground states of 2D monolayer systems with both artificial and calculated interactions from density functional theory. It is also worth noting that the inherent concurrent property of this algorithm can significantly decrease the execution time. In conclusion, our proposed method builds a useful tool for low-dimensional magnetic system energy optimization.
translated by 谷歌翻译
The outbreak of the SARS-CoV-2 pandemic has put healthcare systems worldwide to their limits, resulting in increased waiting time for diagnosis and required medical assistance. With chest radiographs (CXR) being one of the most common COVID-19 diagnosis methods, many artificial intelligence tools for image-based COVID-19 detection have been developed, often trained on a small number of images from COVID-19-positive patients. Thus, the need for high-quality and well-annotated CXR image databases increased. This paper introduces POLCOVID dataset, containing chest X-ray (CXR) images of patients with COVID-19 or other-type pneumonia, and healthy individuals gathered from 15 Polish hospitals. The original radiographs are accompanied by the preprocessed images limited to the lung area and the corresponding lung masks obtained with the segmentation model. Moreover, the manually created lung masks are provided for a part of POLCOVID dataset and the other four publicly available CXR image collections. POLCOVID dataset can help in pneumonia or COVID-19 diagnosis, while the set of matched images and lung masks may serve for the development of lung segmentation solutions.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
Insufficient image spatial resolution is a serious limitation in many practical scenarios, especially when acquiring images at a finer scale is infeasible or brings higher costs. This is inherent to remote sensing, including Sentinel-2 satellite images that are available free of charge at a high revisit frequency, but whose spatial resolution is limited to 10 m ground sampling distance. The resolution can be increased with super-resolution algorithms, in particular when performed from multiple images captured at subsequent revisits of a satellite, taking advantage of information fusion that leads to enhanced reconstruction accuracy. One of the obstacles in multi-image super-resolution consists in the scarcity of real-world benchmarks - commonly, simulated data are exploited which do not fully reflect the operating conditions. In this paper, we introduce a new MuS2 benchmark for super-resolving multiple Sentinel-2 images, with WorldView-2 imagery used as the high-resolution reference. Within MuS2, we publish the first end-to-end evaluation procedure for this problem which we expect to help the researchers in advancing the state of the art in multi-image super-resolution.
translated by 谷歌翻译
我们考虑偏微分方程(PDE)的逆问题,以便依赖关系结构的参数可以随着时间的流逝而表现出随机变更点。例如,当物理系统处于恶意攻击下(例如,黑客对电网和互联网网络的攻击)或遭受极端外部条件(例如,影响电网的天气条件或大型市场移动)影响衍生性的估值时,可能会发生这种情况。合同)。为此,我们采用了物理知情的神经网络(PINNS) - 可以合并PDE系统所描述的任何物理定律的普遍近似值。这种先验的知识在神经网络的训练中起作用,是限制可接受解决方案空间并增加功能近似的正确性的正规化。我们表明,当真实的数据生成过程在PDE动力学中表现出更改点时,这种正则化会导致完整的错过校准和模型的故障。因此,我们建议使用总差异惩罚扩展PINN,该惩罚适合PDE动力学中的(多个)变更点。这些更改点可以随着时间的推移在随机位置发生,并且它们与解决方案一起估计。我们提出了一种附加的完善算法,该算法将更改点检测到可用于计算强化PINNS方法的动态编程方法的减少的动态编程方法结合在一起,我们证明了使用不同方程式的示例与参数变化的不同方程式的示例,证明了所提出的模型的好处。如果数据中没有更改点,则提出的模型将减少为原始PINNS模型。在存在变更点的情况下,与原始PINNS模型相比,它会导致参数估计,更好的模型拟合和较低的训练误差的改进。
translated by 谷歌翻译
分类问题的复杂性评估是监督学习领域许多主题的重要因素。它在元学习中起着重要的作用 - 成为确定元属性或多准则优化的基础 - 允许评估训练集进行重新采样而无需重建识别模型。目前可用于学术界可用的工具,该工具将可以计算问题复杂性度量,仅作为C ++和R语言的库可用。本文介绍了软件模块,该模块允许估算Python语言的22种复杂性度量 - 与Scikit-Learn编程界面兼容 - 允许在机器学习社区最受欢迎的编程环境中使用它们实施研究。
translated by 谷歌翻译
联想记忆一直是大规模复发新皮层网络进行的计算的重要候选者。实施关联记忆的吸引者网络为许多认知现象提供了机械解释。但是,吸引子记忆模型通常是使用正交或随机模式训练的,以避免记忆之间的干扰,这使得它们对于自然存在的复杂相关刺激(如图像)而言是不可行的。我们通过将经常性吸引子网络与馈电网络相结合,该网络使用无监督的Hebbian-Bayesian学习规则来学习分布式表示形式。最终的网络模型涵盖了许多已知的生物学特性:无监督的学习,HEBBIAN可塑性,稀疏分布激活,稀疏连接性,柱状和层状皮质体系结构等。我们评估了FeefForward和Recurrent网络组件在复杂模式识别任务中对FeefForward和Recurrent Network组件的协同效应MNIST手写数字数据集。我们证明,经过训练在前馈驱动的内部(隐藏)表示上时,经常性吸引子组件会实现关联内存。还显示了关联内存可以从训练数据中进行原型提取,并使表示强大到严重失真的输入。我们认为,从机器学习的角度来看,提议集成的馈电和复发计算的整合尤其有吸引力。
translated by 谷歌翻译