联想记忆一直是大规模复发新皮层网络进行的计算的重要候选者。实施关联记忆的吸引者网络为许多认知现象提供了机械解释。但是,吸引子记忆模型通常是使用正交或随机模式训练的,以避免记忆之间的干扰,这使得它们对于自然存在的复杂相关刺激(如图像)而言是不可行的。我们通过将经常性吸引子网络与馈电网络相结合,该网络使用无监督的Hebbian-Bayesian学习规则来学习分布式表示形式。最终的网络模型涵盖了许多已知的生物学特性:无监督的学习,HEBBIAN可塑性,稀疏分布激活,稀疏连接性,柱状和层状皮质体系结构等。我们评估了FeefForward和Recurrent网络组件在复杂模式识别任务中对FeefForward和Recurrent Network组件的协同效应MNIST手写数字数据集。我们证明,经过训练在前馈驱动的内部(隐藏)表示上时,经常性吸引子组件会实现关联内存。还显示了关联内存可以从训练数据中进行原型提取,并使表示强大到严重失真的输入。我们认为,从机器学习的角度来看,提议集成的馈电和复发计算的整合尤其有吸引力。
translated by 谷歌翻译
AI的一个关键挑战是构建体现的系统,该系统在动态变化的环境中运行。此类系统必须适应更改任务上下文并持续学习。虽然标准的深度学习系统实现了最先进的静态基准的结果,但它们通常在动态方案中挣扎。在这些设置中,来自多个上下文的错误信号可能会彼此干扰,最终导致称为灾难性遗忘的现象。在本文中,我们将生物学启发的架构调查为对这些问题的解决方案。具体而言,我们表明树突和局部抑制系统的生物物理特性使网络能够以特定于上下文的方式动态限制和路由信息。我们的主要贡献如下。首先,我们提出了一种新颖的人工神经网络架构,该架构将活跃的枝形和稀疏表示融入了标准的深度学习框架中。接下来,我们在需要任务的适应性的两个单独的基准上研究这种架构的性能:Meta-World,一个机器人代理必须学习同时解决各种操纵任务的多任务强化学习环境;和一个持续的学习基准,其中模型的预测任务在整个训练中都会发生变化。对两个基准的分析演示了重叠但不同和稀疏的子网的出现,允许系统流动地使用最小的遗忘。我们的神经实现标志在单一架构上第一次在多任务和持续学习设置上取得了竞争力。我们的研究揭示了神经元的生物学特性如何通知深度学习系统,以解决通常不可能对传统ANN来解决的动态情景。
translated by 谷歌翻译
神经生成模型可用于学习从数据的复杂概率分布,从它们中进行采样,并产生概率密度估计。我们提出了一种用于开发由大脑预测处理理论启发的神经生成模型的计算框架。根据预测加工理论,大脑中的神经元形成一个层次结构,其中一个级别的神经元形成关于来自另一个层次的感觉输入的期望。这些神经元根据其期望与观察到的信号之间的差异更新其本地模型。以类似的方式,我们的生成模型中的人造神经元预测了邻近的神经元的作用,并根据预测匹配现实的程度来调整它们的参数。在这项工作中,我们表明,在我们的框架内学到的神经生成模型在练习中跨越多个基准数据集和度量来表现良好,并且保持竞争或显着优于具有类似功能的其他生成模型(例如变形自动编码器)。
translated by 谷歌翻译
驱动深度学习成功的反向传播很可能与大脑的学习机制不同。在本文中,我们制定了一项受生物学启发的学习规则,该规则在HEBB著名的建议的想法之后,发现了当地竞争的特征。已经证明,该本地学习规则所学的无监督功能可以作为培训模型,以提高某些监督学习任务的绩效。更重要的是,该本地学习规则使我们能够构建一个与返回传播完全不同的新学习范式,该范式命名为激活学习,其中神经网络的输出激活大致衡量了输入模式的可能性。激活学习能够从几乎没有输入模式的几镜头中学习丰富的本地特征,并且当训练样本的数量相对较小时,比反向传播算法表现出明显更好的性能。这种学习范式统一了无监督的学习,监督的学习和生成模型,并且更安全地抵抗对抗性攻击,为建立一般任务神经网络的某些可能性铺平了道路。
translated by 谷歌翻译
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for computational systems and autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. Although significant advances have been made in domain-specific learning with neural networks, extensive research efforts are required for the development of robust lifelong learning on autonomous agents and robots. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.
translated by 谷歌翻译
预测性编码提供了对皮质功能的潜在统一说明 - 假设大脑的核心功能是最小化有关世界生成模型的预测错误。该理论与贝叶斯大脑框架密切相关,在过去的二十年中,在理论和认知神经科学领域都产生了重大影响。基于经验测试的预测编码的改进和扩展的理论和数学模型,以及评估其在大脑中实施的潜在生物学合理性以及该理论所做的具体神经生理学和心理学预测。尽管存在这种持久的知名度,但仍未对预测编码理论,尤其是该领域的最新发展进行全面回顾。在这里,我们提供了核心数学结构和预测编码的逻辑的全面综述,从而补充了文献中最新的教程。我们还回顾了该框架中的各种经典和最新工作,从可以实施预测性编码的神经生物学现实的微电路到预测性编码和广泛使用的错误算法的重新传播之间的紧密关系,以及对近距离的调查。预测性编码和现代机器学习技术之间的关系。
translated by 谷歌翻译
深信仰网络(DBN)是随机神经网络,可以从感觉数据中提取丰富的环境内部表示。 DBN在触发深度学习革命方面具有催化作用,这是第一次证明在具有许多隐藏神经元层的网络中无监督学习的可行性。由于它们的生物学和认知合理性,这些等级架构也已成功利用,以在各种领域建立人类感知和认知的计算模型。但是,DBN的学习通常是以贪婪的,层次的方式进行的,这不允许模拟皮质回路的整体发展。在这里,我们提出IDBN,这是一种迭代学习算法,用于DBN,允许共同更新层次结构所有层的连接权重。我们在两组不同的视觉刺激上测试算法,我们表明网络开发也可以通过图理论属性来跟踪。使用我们的迭代方法训练的DBN实现了与贪婪对应物相当的最终性能,同时允许准确地分析生成模型中内部表示的逐步发展。我们的工作为使用IDBN进行建模神经认知发展铺平了道路。
translated by 谷歌翻译
人类和其他动物学会从感觉体验中提取一般概念,没有大量的教学。这种能力被认为是睡眠的离线状态,如睡眠,以前的经验在全身重放。然而,梦想的特征创造性本质表明,学习语义表示可能超越仅仅重播以前的经历。我们通过实施由生成的对冲网络(GANS)启发的皮质架构来支持这一假设。我们模型中的学习是在三种不同的全球脑状态下组织,模仿清醒,NREM和REM睡眠,优化不同但互补的客观功能。我们在自然图像的标准数据集上培训模型,并评估学习符号的质量。我们的结果表明,通过对抗睡眠期间通过对抗梦想产生新的虚拟感官输入对于提取语义概念至关重要,同时通过在NREM睡眠期间通过扰动梦想重放剧集的集更记忆,提高了潜在表示的鲁棒性。该模型在睡眠状态,记忆重放和梦想中提供了一种新的计算透视,并提出了GAN的皮质实施。
translated by 谷歌翻译
在基于人工神经网络的终身学习系统中,最大的障碍之一是在遇到新信息时无法保留旧知识。这种现象被称为灾难性遗忘。在本文中,我们提出了一种新型的连接主义架构,即顺序的神经编码网络,在从数据点流中学习时忘记了,并且与当今的网络不同,它不会通过流行的错误反向传播来学习。基于预测性处理的神经认知理论,我们的模型以生物学上可行的方式适应了突触,而另一个神经系统学会了指导和控制这种类似皮层的结构,模仿了一些基础神经节的某些任务连续控制功能。在我们的实验中,我们证明了与标准神经模型相比,我们的自组织系统经历的遗忘大大降低,表现优于先前提出的方法,包括基于排练/数据缓冲的方法,包括标准(SplitMnist,SplitMnist,Split Mnist等) 。)和定制基准测试,即使以溪流式的方式进行了训练。我们的工作提供了证据表明,在实际神经元系统中模仿机制,例如本地学习,横向竞争,可以产生新的方向和可能性,以应对终身机器学习的巨大挑战。
translated by 谷歌翻译
尖峰神经网络(SNN)引起了脑启发的人工智能和计算神经科学的广泛关注。它们可用于在多个尺度上模拟大脑中的生物信息处理。更重要的是,SNN是适当的抽象水平,可以将大脑和认知的灵感带入人工智能。在本文中,我们介绍了脑启发的认知智力引擎(Braincog),用于创建脑启发的AI和脑模拟模型。 Braincog将不同类型的尖峰神经元模型,学习规则,大脑区域等作为平台提供的重要模块。基于这些易于使用的模块,BrainCog支持各种受脑启发的认知功能,包括感知和学习,决策,知识表示和推理,运动控制和社会认知。这些受脑启发的AI模型已在各种受监督,无监督和强化学习任务上有效验证,并且可以用来使AI模型具有多种受脑启发的认知功能。为了进行大脑模拟,Braincog实现了决策,工作记忆,神经回路的结构模拟以及小鼠大脑,猕猴大脑和人脑的整个大脑结构模拟的功能模拟。一个名为BORN的AI引擎是基于Braincog开发的,它演示了如何将Braincog的组件集成并用于构建AI模型和应用。为了使科学追求解码生物智能的性质并创建AI,Braincog旨在提供必要且易于使用的构件,并提供基础设施支持,以开发基于脑部的尖峰神经网络AI,并模拟认知大脑在多个尺度上。可以在https://github.com/braincog-x上找到Braincog的在线存储库。
translated by 谷歌翻译
在过去的几十年中,人工智能领域大大进展,灵感来自生物学和神经科学领域的发现。这项工作的想法是由来自传入和横向/内部联系的人脑中皮质区域的自组织过程的过程启发。在这项工作中,我们开发了一个原始的脑激发神经模型,将自组织地图(SOM)和Hebbian学习在重新参与索马里(RESOM)模型中。该框架应用于多模式分类问题。与基于未经监督的学习的现有方法相比,该模型增强了最先进的结果。这项工作还通过在名为SPARP(自配置3D蜂窝自适应平台)的专用FPGA的平台上的模拟结果和硬件执行,演示了模型的分布式和可扩展性。头皮板可以以模块化方式互连,以支持神经模型的结构。这种统一的软件和硬件方法使得能够缩放处理并允许来自多个模态的信息进行动态合并。硬件板上的部署提供了在多个设备上并行执行的性能结果,通过专用串行链路在每个板之间的通信。由于多模式关联,所提出的统一架构,由RESOM模型和头皮硬件平台组成的精度显着提高,与集中式GPU实现相比,延迟和功耗之间的良好折衷。
translated by 谷歌翻译
In 2019 Kerdels and Peters proposed a grid cell model (GCM) based on a Differential Growing Neural Gas (DGNG) network architecture as a computationally efficient way to model an Autoassociative Memory Cell (AMC) \cite{Kerdels_Peters_2019}. An important feature of the DGNG architecture with respect to possible applications in the field of computational neuroscience is its \textit{capacity} refering to its capability to process and uniquely distinguish input signals and therefore obtain a valid representation of the input space. This study evaluates the capacity of a two layered DGNG grid cell model on the Fashion-MNIST dataset. The focus on the study lies on the variation of layer sizes to improve the understanding of capacity properties in relation to network parameters as well as its scaling properties. Additionally, parameter discussions and a plausability check with a pixel/segment variation method are provided. It is concluded, that the DGNG model is able to obtain a meaningful and plausible representation of the input space and to cope with the complexity of the Fashion-MNIST dataset even at moderate layer sizes.
translated by 谷歌翻译
最近的研究表明,卷积神经网络(CNNS)不是图像分类的唯一可行的解决方案。此外,CNN中使用的重量共享和反向验证不对应于预测灵长类动物视觉系统中存在的机制。为了提出更加生物合理的解决方案,我们设计了使用峰值定时依赖性塑性(STDP)和其奖励调制变体(R-STDP)学习规则训练的本地连接的尖峰神经网络(SNN)。使用尖刺神经元和局部连接以及强化学习(RL)将我们带到了所提出的架构中的命名法生物网络。我们的网络由速率编码的输入层组成,后跟局部连接的隐藏层和解码输出层。采用尖峰群体的投票方案进行解码。我们使用Mnist DataSet获取图像分类准确性,并评估我们有益于于不同目标响应的奖励系统的稳健性。
translated by 谷歌翻译
过去十年来,人们对人工智能(AI)的兴趣激增几乎完全由人工神经网络(ANN)的进步驱动。尽管ANN为许多以前棘手的问题设定了最先进的绩效,但它们需要大量的数据和计算资源进行培训,并且由于他们采用了监督的学习,他们通常需要知道每个培训示例的正确标记的响应,并限制它们对现实世界域的可扩展性。尖峰神经网络(SNN)是使用更多类似脑部神经元的ANN的替代方法,可以使用无监督的学习来发现输入数据中的可识别功能,而又不知道正确的响应。但是,SNN在动态稳定性方面挣扎,无法匹配ANN的准确性。在这里,我们展示了SNN如何克服文献中发现的许多缺点,包括为消失的尖峰问题提供原则性解决方案,以优于所有现有的浅SNN,并等于ANN的性能。它在使用无标记的数据和仅1/50的训练时期使用无监督的学习时完成了这一点(标记数据仅用于最终的简单线性读数层)。该结果使SNN成为可行的新方法,用于使用未标记的数据集快速,准确,有效,可解释的机器学习。
translated by 谷歌翻译
经常性神经网络(RNN)经常用于建模脑功能和结构的方面。在这项工作中,我们培训了小型完全连接的RNN,以具有时变刺激的时间和流量控制任务。我们的结果表明,不同的RNN可以通过对不同的底层动态进行不同的RNN来解决相同的任务,并且优雅地降低的性能随着网络尺寸而降低,间隔持续时间增加,或者连接损坏。我们的结果对于量化通常用作黑匣子的模型的不同方面是有用的,并且需要预先理解以建模脑皮质区域的生物反应。
translated by 谷歌翻译
The ability to sequentially learn multiple tasks without forgetting is a key skill of biological brains, whereas it represents a major challenge to the field of deep learning. To avoid catastrophic forgetting, various continual learning (CL) approaches have been devised. However, these usually require discrete task boundaries. This requirement seems biologically implausible and often limits the application of CL methods in the real world where tasks are not always well defined. Here, we take inspiration from neuroscience, where sparse, non-overlapping neuronal representations have been suggested to prevent catastrophic forgetting. As in the brain, we argue that these sparse representations should be chosen on the basis of feed forward (stimulus-specific) as well as top-down (context-specific) information. To implement such selective sparsity, we use a bio-plausible form of hierarchical credit assignment known as Deep Feedback Control (DFC) and combine it with a winner-take-all sparsity mechanism. In addition to sparsity, we introduce lateral recurrent connections within each layer to further protect previously learned representations. We evaluate the new sparse-recurrent version of DFC on the split-MNIST computer vision benchmark and show that only the combination of sparsity and intra-layer recurrent connections improves CL performance with respect to standard backpropagation. Our method achieves similar performance to well-known CL methods, such as Elastic Weight Consolidation and Synaptic Intelligence, without requiring information about task boundaries. Overall, we showcase the idea of adopting computational principles from the brain to derive new, task-free learning algorithms for CL.
translated by 谷歌翻译
由于灾难性的遗忘,计算系统的持续学习是挑战。我们在果蝇嗅觉系统中发现了两个层神经循环,通过独特地组合稀疏编码和关联学习来解决这一挑战。在第一层中,使用稀疏,高尺寸表示来编码气味,这通过激活非重叠神经元的神经元以进行不同气味来减少内存干扰。在第二层中,在学习期间仅修改异味活性神经元和与气味相关的输出神经元之间的突触;冻结其余重量以防止不相关的存储器被覆盖。我们经验和分析显示,这种简单轻型的算法显着提高了不断的学习性能。飞行关联学习算法与经典的Perceptron学习算法引人注目,尽管我们表现出两种修改对于减少灾难性遗忘至关重要。总体而言,果蝇演变了一种有效的终身学习算法,可以转换来自神经科学的电路机制以改善机器计算。
translated by 谷歌翻译
人工神经网络通过反向传播培训极其深的网络成功解决了各种各样的问题。直接应用背部传播到尖峰神经网络含有生物学难以判断的组件,如重量运输问题或单独的推理和学习阶段。各种方法单独地解决不同的组件,但完整的解决方案保持无形。在这里,我们采取了一种替代方法,可以完全避免反向传播及其相关问题。深度学习的最新工作提出了通过信息瓶颈(IB)独立培训每层网络。随后的研究指出,该层面的方法绕过层的误差传播,导致生物合理的范式。不幸的是,使用一批样本来计算IB。先前的工作通过重量更新解决,仅使用两个样本(当前和先前的样本)。我们的工作通过将体重更新分解为本地和全局组件来采用不同的方法。本地组件是Hebbian,只取决于当前的样本。全局组件计算依赖于一批样本的层面调制信号。我们表明该调制信号可以通过具有像储存器的工作存储器(WM)的辅助电路来学习。因此,我们可以使用大于两个的批量尺寸,并且批处理大小确定了WM所需的容量。据我们所知,我们的规则是第一种生物合理的机制,可以直接与任务的WM耦合突触更新。我们评估我们对综合数据集和图像分类数据集的规则,如Mnist,我们探讨了WM容量对学习性能的影响。我们希望我们的工作是了解记忆在学习中的机制作用的第一步。
translated by 谷歌翻译
Deep learning takes advantage of large datasets and computationally efficient training algorithms to outperform other approaches at various machine learning tasks. However, imperfections in the training phase of deep neural networks make them vulnerable to adversarial samples: inputs crafted by adversaries with the intent of causing deep neural networks to misclassify. In this work, we formalize the space of adversaries against deep neural networks (DNNs) and introduce a novel class of algorithms to craft adversarial samples based on a precise understanding of the mapping between inputs and outputs of DNNs. In an application to computer vision, we show that our algorithms can reliably produce samples correctly classified by human subjects but misclassified in specific targets by a DNN with a 97% adversarial success rate while only modifying on average 4.02% of the input features per sample. We then evaluate the vulnerability of different sample classes to adversarial perturbations by defining a hardness measure. Finally, we describe preliminary work outlining defenses against adversarial samples by defining a predictive measure of distance between a benign input and a target classification.
translated by 谷歌翻译
所谓的内容,因为可以通过项目的部分或损坏的版本召回了所谓的内容,因为存储的项目显示了几乎完美的召回少数低于容量的信息密集模式和“记忆悬崖”以外,因此插入单个模式会导致所有存储模式的灾难性丧失。我们提出了一种新颖的CAM架构,具有异质关联(网格)的内存支架(网格),它分配了内部吸引力动力学的问题,并与外部内容相关联,以生成无记忆悬崖的凸轮连续性:少量的模式以完整的信息恢复匹配标准存储凸轮同时插入更多模式仍会导致每种模式的部分回忆,并在模式数和模式丰富度之间进行优雅的权衡。网格是由大脑中肠道海马的内存电路的架构激励的,是一种三方结构,具有成对相互作用,使用了一组预定的内部稳定状态,以及内部状态和任意外部模式之间的异性关联。我们通过分析和实验表明,对于任何数量的存储模式,网格几乎可以饱和cam网络的总信息(由突触的数量给出),表现优于所有现有的CAM模型。
translated by 谷歌翻译