在过去的十年中,在杂交无人驾驶空中水下车辆的研究中努力,机器人可以轻松飞行和潜入水中的机械适应水平。然而,大多数文献集中在物理设计,建筑物的实际问题上,最近,低水平的控制策略。在高级情报的背景下,如运动规划和与现实世界的互动的情况下已经完成。因此,我们在本文中提出了一种轨迹规划方法,允许避免避免未知的障碍和空中媒体之间的平滑过渡。我们的方法基于经典迅速探索随机树的变体,其主要优点是处理障碍,复杂的非线性动力学,模型不确定性和外部干扰的能力。该方法使用\ Hydrone的动态模型,提出具有高水下性能的混合动力车辆,但我们认为它可以很容易地推广到其他类型的空中/水生平台。在实验部分中,我们在充满障碍物的环境中显示了模拟结果,其中机器人被命令执行不同的媒体运动,展示了我们的策略的适用性。
translated by 谷歌翻译
本文介绍了一种新型深度加强基于基于深度加强学习的3D Fapless导航系统(无人机)。我们提出了一个简单的学习系统,而不是使用一种简单的学习系统,该系统仅使用来自距离传感器的一些稀疏范围数据来训练学习代理。我们基于我们对两种最先进的双重评论家深度RL模型的方法:双延迟深度确定性政策梯度(TD3)和软演员 - 评论家(SAC)。我们表明,我们的两种方法可以基于深度确定性政策梯度(DDPG)技术和Bug2算法来胜过一种方法。此外,我们基于经常性神经网络(RNNS)的新的深度RL结构优于用于执行移动机器人的FAPLESS导航的当前结构。总体而言,我们得出结论,基于双重评论评价的深度RL方法与经常性神经网络(RNNS)更适合进行熔化的导航和避免无人机。
translated by 谷歌翻译
强化学习(RL)通过原始像素成像和连续的控制任务在视频游戏中表现出了令人印象深刻的表现。但是,RL的性能较差,例如原始像素图像,例如原始像素图像。人们普遍认为,基于物理状态的RL策略(例如激光传感器测量值)比像素学习相比会产生更有效的样品结果。这项工作提出了一种新方法,该方法从深度地图估算中提取信息,以教授RL代理以执行无人机导航(UAV)的无地图导航。我们提出了深度模仿的对比度无监督的优先表示(DEPTH-CUPRL),该表示具有优先重播记忆的估算图像的深度。我们使用RL和对比度学习的组合,根据图像的RL问题引发。从无人驾驶汽车(UAV)对结果的分析中,可以得出结论,我们的深度cuprl方法在无MAP导航能力中对决策和优于最先进的像素的方法有效。
translated by 谷歌翻译
由于可以自主使用的广泛应用,无人驾驶汽车(UAV)一直脱颖而出。但是,他们需要智能系统,能够提供对执行多个任务的看法的更多了解。在复杂的环境中,它们变得更具挑战性,因为有必要感知环境并在环境不确定性下采取行动以做出决定。在这种情况下,使用主动感知的系统可以通过在发生位移时通过识别目标来寻求最佳下一个观点来提高性能。这项工作旨在通过解决跟踪和识别水面结构以执行动态着陆的问题来为无人机的积极感知做出贡献。我们表明,使用经典图像处理技术和简单的深度强化学习(DEEP-RL)代理能够感知环境并处理不确定性的情况,而无需使用复杂的卷积神经网络(CNN)或对比度学习(CL),我们的系统能够感知环境并处理不确定性(CL),我们的系统能够感知环境并处理不确定性。 。
translated by 谷歌翻译
先前的工作表明,深-RL可以应用于无地图导航,包括混合无人驾驶空中水下车辆(Huauvs)的中等过渡。本文介绍了基于最先进的演员批评算法的新方法,以解决Huauv的导航和中型过渡问题。我们表明,具有复发性神经网络的双重评论家Deep-RL可以使用仅范围数据和相对定位来改善Huauvs的导航性能。我们的深-RL方法通过通过不同的模拟场景对学习的扎实概括,实现了更好的导航和过渡能力,表现优于先前的方法。
translated by 谷歌翻译
深钢筋学习中的确定性和随机技术已成为改善运动控制和各种机器人的决策任务的有前途的解决方案。先前的工作表明,这些深-RL算法通常可以应用于一般的移动机器人的无MAP导航。但是,他们倾向于使用简单的传感策略,因为已经证明它们在高维状态空间(例如基于图像的传感的空间)方面的性能不佳。本文在执行移动机器人无地图导航的任务时,对两种深-RL技术 - 深确定性政策梯度(DDPG)和软参与者(SAC)进行了比较分析。我们的目标是通过展示神经网络体系结构如何影响学习本身的贡献,并根据每种方法的航空移动机器人导航的时间和距离提出定量结果。总体而言,我们对六个不同体系结构的分析强调了随机方法(SAC)更好地使用更深的体系结构,而恰恰相反发生在确定性方法(DDPG)中。
translated by 谷歌翻译
我们研究了图结构识别的问题,即在时间序列之间恢复依赖图的图。我们将这些时间序列数据建模为线性随机网络动力学系统状态的组成部分。我们假设部分可观察性,其中仅观察到一个包含网络的节点子集的状态演变。我们设计了一个从观察到的时间序列计算的新功能向量,并证明这些特征是线性可分离的,即存在一个超平面,该超平面将与连接的节点成对相关的特征群体与与断开对相关的节点相关联。这使得可以训练各种分类器进行因果推理的功能。特别是,我们使用这些功能来训练卷积神经网络(CNN)。由此产生的因果推理机制优于最先进的W.R.T.样品复杂性。受过训练的CNN概括了结构上不同的网络(密集或稀疏)和噪声级别的轮廓。值得注意的是,他们在通过合成网络(随机图的实现)训练时也很好地概括了现实世界网络。最后,提出的方法始终以成对的方式重建图,也就是说,通过确定每对相应的时间序列中的每对节点中是否存在边缘或箭头或不存在箭头。这符合大规模系统的框架,在该系统中,网络中所有节点的观察或处理都令人难以置信。
translated by 谷歌翻译
心脏听诊是用于检测和识别许多心脏病的最具成本效益的技术之一。基于Auscultation的计算机辅助决策系统可以支持他们的决定中的医生。遗憾的是,在临床试验中的应用仍然很小,因为它们中的大多数仅旨在检测音盲局部信号中的额外或异常波的存在,即,仅提供二进制地面真理变量(普通VS异常)。这主要是由于缺乏大型公共数据集,其中存在对这种异常波(例如,心脏杂音)的更详细描述。为基于听诊的医疗建议系统铺平了更有效的研究,我们的团队准备了目前最大的儿科心声数据集。从1568名患者的四个主要听诊位置收集了5282个录音,在此过程中,手动注释了215780人的心声。此外,并且首次通过专家注释器根据其定时,形状,俯仰,分级和质量来手动注释每个心脏杂音。此外,鉴定了杂音的听诊位置以及杂音更集中检测到杂音的位置位置。对于相对大量的心脏声音的这种详细描述可以为新机器学习算法铺平道路,该算法具有真实世界的应用,用于检测和分析诊断目的的杂波。
translated by 谷歌翻译
This research presents ORUGA, a method that tries to automatically optimize the readability of any text in English. The core idea behind the method is that certain factors affect the readability of a text, some of which are quantifiable (number of words, syllables, presence or absence of adverbs, and so on). The nature of these factors allows us to implement a genetic learning strategy to replace some existing words with their most suitable synonyms to facilitate optimization. In addition, this research seeks to preserve both the original text's content and form through multi-objective optimization techniques. In this way, neither the text's syntactic structure nor the semantic content of the original message is significantly distorted. An exhaustive study on a substantial number and diversity of texts confirms that our method was able to optimize the degree of readability in all cases without significantly altering their form or meaning. The source code of this approach is available at https://github.com/jorge-martinez-gil/oruga.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译