文本对图像模型提供了前所未有的自由,可以通过自然语言指导创作。然而,尚不清楚如何行使这种自由以生成特定独特概念,修改其外观或以新角色和新颖场景构成它们的图像。换句话说,我们问:我们如何使用语言指导的模型将猫变成绘画,或者想象基于我们喜欢的玩具的新产品?在这里,我们提出了一种简单的方法,可以允许这种创造性自由。我们仅使用3-5个用户提供的概念(例如对象或样式)的图像,我们学会通过在冷冻文本到图像模型的嵌入空间中通过新的“单词”表示它。这些“单词”可以组成自然语言句子,以直观的方式指导个性化的创作。值得注意的是,我们发现有证据表明单词嵌入足以捕获独特而多样的概念。我们将我们的方法比较了各种基线,并证明它可以更忠实地描绘出一系列应用程序和任务的概念。我们的代码,数据和新单词将在以下网址提供:https://textual-inversion.github.io
translated by 谷歌翻译
可以训练生成模型,以从特定域中生成图像,仅由文本提示引导,而不看到任何图像?换句话说:可以将图像生成器“盲目地训练”吗?利用大规模对比语言图像预训练(CLIP)模型的语义力量,我们提出了一种文本驱动方法,允许将生成模型转移到新域,而无需收集单个图像。我们展示通过自然语言提示和几分钟的培训,我们的方法可以通过各种风格和形状的多种域调整发电机。值得注意的是,许多这些修改难以与现有方法达到困难或完全不可能。我们在广泛的域中进行了广泛的实验和比较。这些证明了我们方法的有效性,并表明我们的移动模型保持了对下游任务吸引的生成模型的潜在空间属性。
translated by 谷歌翻译
Stone" "Mohawk hairstyle" "Without makeup" "Cute cat" "Lion" "Gothic church" * Equal contribution, ordered alphabetically. Code and video are available on https://github.com/orpatashnik/StyleCLIP
translated by 谷歌翻译
Figure 1. The proposed pixel2style2pixel framework can be used to solve a wide variety of image-to-image translation tasks. Here we show results of pSp on StyleGAN inversion, multi-modal conditional image synthesis, facial frontalization, inpainting and super-resolution.
translated by 谷歌翻译
As text generated by large language models proliferates, it becomes vital to understand how humans engage with such text, and whether or not they are able to detect when the text they are reading did not originate with a human writer. Prior work on human detection of generated text focuses on the case where an entire passage is either human-written or machine-generated. In this paper, we study a more realistic setting where text begins as human-written and transitions to being generated by state-of-the-art neural language models. We show that, while annotators often struggle at this task, there is substantial variance in annotator skill and that given proper incentives, annotators can improve at this task over time. Furthermore, we conduct a detailed comparison study and analyze how a variety of variables (model size, decoding strategy, fine-tuning, prompt genre, etc.) affect human detection performance. Finally, we collect error annotations from our participants and use them to show that certain textual genres influence models to make different types of errors and that certain sentence-level features correlate highly with annotator selection. We release the RoFT dataset: a collection of over 21,000 human annotations paired with error classifications to encourage future work in human detection and evaluation of generated text.
translated by 谷歌翻译
Quantum many-body problems are some of the most challenging problems in science and are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors. The combination of neural networks (NN) for representing quantum states, coupled with the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems. However, the run-time of this approach scales quadratically with the number of simulated particles, constraining the practically usable NN to - in machine learning terms - minuscule sizes (<10M parameters). Considering the many breakthroughs brought by extreme NN in the +1B parameters scale to other domains, lifting this constraint could significantly expand the set of quantum systems we can accurately simulate on classical computers, both in size and complexity. We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm - the source of the quadratic scaling. In our preliminary experiments, we demonstrate VQ-NQS ability to reproduce the ground state of the 2D Heisenberg model across various system sizes, while reporting a significant reduction of about ${\times}10$ in the number of FLOPs in the local-energy calculation.
translated by 谷歌翻译
Recent advances in open-domain question answering (ODQA) have demonstrated impressive accuracy on standard Wikipedia style benchmarks. However, it is less clear how robust these models are and how well they perform when applied to real-world applications in drastically different domains. While there has been some work investigating how well ODQA models perform when tested for out-of-domain (OOD) generalization, these studies have been conducted only under conservative shifts in data distribution and typically focus on a single component (ie. retrieval) rather than an end-to-end system. In response, we propose a more realistic and challenging domain shift evaluation setting and, through extensive experiments, study end-to-end model performance. We find that not only do models fail to generalize, but high retrieval scores often still yield poor answer prediction accuracy. We then categorize different types of shifts and propose techniques that, when presented with a new dataset, predict if intervention methods are likely to be successful. Finally, using insights from this analysis, we propose and evaluate several intervention methods which improve end-to-end answer F1 score by up to 24 points.
translated by 谷歌翻译
Machine Translation Quality Estimation (QE) is the task of evaluating translation output in the absence of human-written references. Due to the scarcity of human-labeled QE data, previous works attempted to utilize the abundant unlabeled parallel corpora to produce additional training data with pseudo labels. In this paper, we demonstrate a significant gap between parallel data and real QE data: for QE data, it is strictly guaranteed that the source side is original texts and the target side is translated (namely translationese). However, for parallel data, it is indiscriminate and the translationese may occur on either source or target side. We compare the impact of parallel data with different translation directions in QE data augmentation, and find that using the source-original part of parallel corpus consistently outperforms its target-original counterpart. Moreover, since the WMT corpus lacks direction information for each parallel sentence, we train a classifier to distinguish source- and target-original bitext, and carry out an analysis of their difference in both style and domain. Together, these findings suggest using source-original parallel data for QE data augmentation, which brings a relative improvement of up to 4.0% and 6.4% compared to undifferentiated data on sentence- and word-level QE tasks respectively.
translated by 谷歌翻译
Modal verbs, such as "can", "may", and "must", are commonly used in daily communication to convey the speaker's perspective related to the likelihood and/or mode of the proposition. They can differ greatly in meaning depending on how they're used and the context of a sentence (e.g. "They 'must' help each other out." vs. "They 'must' have helped each other out.") Despite their practical importance in natural language understanding, linguists have yet to agree on a single, prominent framework for the categorization of modal verb senses. This lack of agreement stems from high degrees of flexibility and polysemy from the modal verbs, making it more difficult for researchers to incorporate insights from this family of words into their work. This work presents Moverb dataset, which consists of 27,240 annotations of modal verb senses over 4,540 utterances containing one or more sentences from social conversations. Each utterance is annotated by three annotators using two different theoretical frameworks (i.e., Quirk and Palmer) of modal verb senses. We observe that both frameworks have similar inter-annotator agreements, despite having different numbers of sense types (8 for Quirk and 3 for Palmer). With the RoBERTa-based classifiers fine-tuned on \dataset, we achieve F1 scores of 82.2 and 78.3 on Quirk and Palmer, respectively, showing that modal verb sense disambiguation is not a trivial task. Our dataset will be publicly available with our final version.
translated by 谷歌翻译
Instruction tuning enables pretrained language models to perform new tasks from inference-time natural language descriptions. These approaches rely on vast amounts of human supervision in the form of crowdsourced datasets or user interactions. In this work, we introduce Unnatural Instructions: a large dataset of creative and diverse instructions, collected with virtually no human labor. We collect 64,000 examples by prompting a language model with three seed examples of instructions and eliciting a fourth. This set is then expanded by prompting the model to rephrase each instruction, creating a total of approximately 240,000 examples of instructions, inputs, and outputs. Experiments show that despite containing a fair amount of noise, training on Unnatural Instructions rivals the effectiveness of training on open-source manually-curated datasets, surpassing the performance of models such as T0++ and Tk-Instruct across various benchmarks. These results demonstrate the potential of model-generated data as a cost-effective alternative to crowdsourcing for dataset expansion and diversification.
translated by 谷歌翻译