为了有效地学习新环境中任务的动态模型,可以调整在类似的源环境中学习的模型。但是,当目标数据集包含动态与源环境大不相同的过渡时,现有的适应方法可能会失败。例如,源环境动力学可能是在自由空间中操纵的绳索,而目标动态可能涉及碰撞和障碍物的变形。我们的关键见解是通过将模型适应仅关注源和目标动力学相似的区域来提高数据效率。在绳索示例中,调整自由空间动力学比调整自由空间动力学的同时学习碰撞动力学所需的数据要少得多。我们提出了一种适应的新方法,该方法可有效适应类似动态的区域。此外,我们将这种适应方法与先前在计划的工作结合使用,并使用不可靠的动态来制定一种称为焦点的数据有效的在线适应方法。我们首先证明,所提出的适应方法在模拟绳索操纵和植物浇水任务上相似动力学区域的预测误差在统计学上显着降低了预测误差。然后,我们展示了一项双层绳索操纵任务,该任务重点是在模拟和现实世界中实现数据效率的在线学习。
translated by 谷歌翻译
在现实世界条件下运行的原因是由于部分可观察性引起的广泛故障而具有挑战性。在相对良性的环境中,可以通过重试或执行少量手工恢复策略之一来克服这种失败。相比之下,诸如打开门和组装家具之类的接触式连续操作任务不适合详尽的手工设计。为了解决这个问题,我们提出了一种以样本效率的方式来鲁棒化操作策略的一般方法。我们的方法通过在模拟中探索发现当前策略的故障模式,从而提高了鲁棒性,然后学习其他恢复技能来处理这些失败。为了确保有效的学习,我们提出了一种在线算法值上限限制(值UCL),该算法选择要优先级的故障模式以及要恢复到哪种状态,以使预期的性能在每个培训情节中最大程度地提高。我们使用我们的方法来学习开门的恢复技能,并在模拟和实际机器人中对其进行评估。与开环执行相比,我们的实验表明,即使是有限的恢复学习也可以从模拟中的71 \%提高到92.4 \%,从75 \%到90 \%的实际机器人。
translated by 谷歌翻译
布料的机器人操作的应用包括织物制造业到处理毯子和洗衣。布料操作对于机器人而言是挑战,这主要是由于它们的高度自由度,复杂的动力学和折叠或皱巴巴配置时的严重自我闭合。机器人操作的先前工作主要依赖于视觉传感器,这可能会对细粒度的操纵任务构成挑战,例如从一堆布上抓住所需数量的布料层。在本文中,我们建议将触觉传感用于布操作;我们将触觉传感器(Resin)连接到弗兰卡机器人的两个指尖之一,并训练分类器,以确定机器人是否正在抓住特定数量的布料层。在测试时间实验中,机器人使用此分类器作为其政策的一部分,使用触觉反馈来掌握一两个布层,以确定合适的握把。实验结果超过180次物理试验表明,与使用图像分类器的方法相比,所提出的方法优于不使用触觉反馈并具有更好地看不见布的基准。代码,数据和视频可在https://sites.google.com/view/reskin-cloth上找到。
translated by 谷歌翻译
本文介绍了Deltaz机器人,这是一种厘米级,低成本,三角洲风格的机器人,可提供广泛的功能和鲁棒的功能。当前的技术使三角洲可以通过柔软和刚性材料进行3D印刷,从而易于组装和维护,并降低使用的障碍。机器人的功能源于其三个翻译自由度和一个封闭形式的运动解,这使操作问题与其他操纵器相比更加直观。此外,机器人的低成本为将操纵者民主化为研究环境提供了机会。我们还描述了如何将机器人用作增强学习基准。开源3D打印机设计和代码可向公众使用。
translated by 谷歌翻译
机器人需要在约束环境(例如架子和橱柜)中操纵物体,以帮助人类在房屋和办公室等日常设置中。这些限制因减少掌握能力而变得难以操纵,因此机器人需要使用非忽视策略来利用对象环境联系来执行操纵任务。为了应对在这种情况下规划和控制接触性富裕行为的挑战,该工作使用混合力量速度控制器(HFVC)作为技能表示和计划的技能序列,并使用学到的先决条件进行了计划。尽管HFVC自然能够实现稳健且合规的富裕行为,但合成它们的求解器传统上依赖于精确的对象模型和对物体姿势的闭环反馈,这些反馈因遮挡而在约束环境中很难获得。我们首先使用HFVC综合框架放松了HFVC对精确模型和反馈的需求,然后学习一个基于点云的前提函数,以对HFVC执行仍将成功地进行分类,尽管建模不正确。最后,我们在基于搜索的任务计划者中使用学到的前提来完成货架域中的接触式操纵任务。我们的方法达到了$ 73.2 \%$的任务成功率,表现优于基线实现的$ 51.5 \%$,而没有学习的先决条件。在模拟中训练了前提函数时,它也可以转移到现实世界中,而无需进行其他微调。
translated by 谷歌翻译
当机器人计划时,不同的型号可以提供不同水平的忠诚度。分析模型通常很快进行评估,但仅在有限的条件范围内起作用。同时,物理模拟器可以有效地建模对象之间的复杂相互作用,但通常在计算上更昂贵。学习何时在各种模型之间切换可以大大提高计划速度和任务成功的可靠性。在这项工作中,我们学习模型偏差估计器(MDE),以预测现实世界状态与通过过渡模型输出的状态之间的误差。 MDE可用于定义一个模型前提,该模型先决条件描述了哪些过渡是准确建模的。然后,我们提出了一个使用学到的模型先决条件在各种模型之间切换的计划者,以便在准确的条件下使用模型,并在可能的情况下更快地对模型进行优先级排序。我们在两个现实世界任务上评估我们的方法:将杆放入盒子中,将杆放入封闭的抽屉中。
translated by 谷歌翻译
本文介绍了一种新型的分布式灵巧操纵器:三角洲阵列。每个三角洲阵列都由线性驱动的三角形机器人的网格组成,并具有符合性的3D打印的平行四边形链接。这些阵列可用于执行类似于智能输送机的平面运输任务。但是,三角洲的额外自由度也提供了各种不同的平面操作,以及在三角洲集合之间的预感。因此,三角洲阵列提供了广泛的分布式操作策略。在本文中,我们介绍了三角阵列的设计,包括单个三角洲,模块化阵列结构以及分布式通信和控制。我们还使用拟议的设计构建和评估了8x8阵列。我们的评估表明,由此产生的192 DOF机器人能够对各种对象进行各种协调的分布操作,包括翻译,对齐和预性挤压。
translated by 谷歌翻译
我们考虑使用最低限度的努力与人类机器人团队一起完成一组$ n $任务的问题。在许多领域中,如果有许多任务有限的任务,教机器人完全自主可能会适得其反。相反,最佳策略是权衡教授机器人及其好处的成本 - 它允许机器人自动解决多少新任务。我们将其作为规划问题提出,目的是确定机器人应自动执行的任务(ACT),应将哪些任务委派给人类(委托)以及应教授机器人的哪些任务(学习)以完成所有给定的任务都以最小的努力。这个计划问题导致搜索树以$ n $成倍增长 - 使标准图形搜索算法难以理解。我们通过将问题转换为混合整数程序来解决这个问题,该程序可以使用固定求解器有效地解决解决方案质量的范围。为了预测学习的好处,我们提出了一个先进的预测分类器。给定两个任务,该分类器预测接受培训的技能是否会转移到另一个。最后,我们在模拟和现实世界中评估了有关PEG插入和乐高堆叠任务的方法,显示了人类努力的大量节省。
translated by 谷歌翻译
为了使机器人系统在高风险,现实世界中取得成功,必须快速部署和强大的环境变化,表现不佳的硬件以及任务子任务失败。这些机器人通常被设计为考虑一系列任务事件,复杂的算法在某些关键的约束下降低了单个子任务失败率。我们的方法在视觉和控制中利用了共同的技术,并通过结果监测和恢复策略将鲁棒性编码为任务结构。此外,我们的系统基础架构可以快速部署,并且不需要中央通信。该报告还包括快速现场机器人开发和测试的课程。我们通过现实机器人实验在美国宾夕法尼亚州匹兹堡的户外测试地点以及2020年的穆罕默德·本·扎耶德国际机器人挑战赛开发和评估了我们的系统。所有竞争试验均在没有RTK-GP的情况下以完全自主模式完成。我们的系统在挑战2中排名第四,在大挑战赛中排名第七,诸如弹出五个气球(挑战1)之类的显着成就,成功地挑选和放置了一个障碍(挑战2),并将最多的水分配到户外,带有真正的户外火,并与自治无人机(挑战3)。
translated by 谷歌翻译
作为自治机器人的互动和导航在诸如房屋之类的真实环境中,可靠地识别和操纵铰接物体,例如门和橱柜是有用的。在对象铰接识别中许多先前的作品需要通过机器人或人类操纵物体。虽然最近的作品已经解决了从视觉观测的预测,但他们经常假设根据其运动约束的铰接部件移动的类别级运动模型或观察序列的先验知识。在这项工作中,我们提出了Formnet,是一种神经网络,该神经网络识别来自RGB-D图像和分段掩模的单帧对象部分的对象部分之间的铰接机制。从6个类别的149个铰接对象的100K合成图像培训网络培训。通过具有域随机化的光保护模拟器呈现合成图像。我们所提出的模型预测物体部件的运动残余流动,并且这些流量用于确定铰接类型和参数。该网络在训练有素的类别中的新对象实例上实现了82.5%的铰接式分类精度。实验还展示了该方法如何实现新颖类别的泛化,并且在没有微调的情况下应用于现实世界图像。
translated by 谷歌翻译