尽管能够隔离视觉数据,但人类花了一些时间来检查一块,更不用说数千或数百万个样本了。深度学习模型在现代计算的帮助下有效地处理了相当大的信息。但是,他们可疑的决策过程引起了相当大的关注。最近的研究已经确定了一种新的方法,可以从EEG信号中提取图像特征,并将其与标准图像特征相结合。这些方法使深度学习模型更容易解释,并且还可以更快地将模型收敛。受最近研究的启发,我们开发了一种编码脑电图信号作为图像的有效方法,以促进使用深度学习模型对大脑信号的更微妙的理解。在此类编码方法中,我们使用两个变体对对应于39个图像类的编码EEG信号对六个受试者的分层数据集的基准精度为70%,这远高于现有工作。与纯净的深度学习方法的准确性稍好相比,我们的图像分类方法具有共同的EEG功能的精度为82%。然而,它证明了该理论的生存能力。
translated by 谷歌翻译
Our paper aims to analyze political polarization in US political system using Language Models, and thereby help candidates make an informed decision. The availability of this information will help voters understand their candidates views on the economy, healthcare, education and other social issues. Our main contributions are a dataset extracted from Wikipedia that spans the past 120 years and a Language model based method that helps analyze how polarized a candidate is. Our data is divided into 2 parts, background information and political information about a candidate, since our hypothesis is that the political views of a candidate should be based on reason and be independent of factors such as birthplace, alma mater, etc. We further split this data into 4 phases chronologically, to help understand if and how the polarization amongst candidates changes. This data has been cleaned to remove biases. To understand the polarization we begin by showing results from some classical language models in Word2Vec and Doc2Vec. And then use more powerful techniques like the Longformer, a transformer based encoder, to assimilate more information and find the nearest neighbors of each candidate based on their political view and their background.
translated by 谷歌翻译
Object movement identification is one of the most researched problems in the field of computer vision. In this task, we try to classify a pixel as foreground or background. Even though numerous traditional machine learning and deep learning methods already exist for this problem, the two major issues with most of them are the need for large amounts of ground truth data and their inferior performance on unseen videos. Since every pixel of every frame has to be labeled, acquiring large amounts of data for these techniques gets rather expensive. Recently, Zhao et al. [1] proposed one of a kind Arithmetic Distribution Neural Network (ADNN) for universal background subtraction which utilizes probability information from the histogram of temporal pixels and achieves promising results. Building onto this work, we developed an intelligent video surveillance system that uses ADNN architecture for motion detection, trims the video with parts only containing motion, and performs anomaly detection on the trimmed video.
translated by 谷歌翻译
Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.
translated by 谷歌翻译
As language models have grown in parameters and layers, it has become much harder to train and infer with them on single GPUs. This is severely restricting the availability of large language models such as GPT-3, BERT-Large, and many others. A common technique to solve this problem is pruning the network architecture by removing transformer heads, fully-connected weights, and other modules. The main challenge is to discern the important parameters from the less important ones. Our goal is to find strong metrics for identifying such parameters. We thus propose two strategies: Cam-Cut based on the GradCAM interpretations, and Smooth-Cut based on the SmoothGrad, for calculating the importance scores. Through this work, we show that our scoring functions are able to assign more relevant task-based scores to the network parameters, and thus both our pruning approaches significantly outperform the standard weight and gradient-based strategies, especially at higher compression ratios in BERT-based models. We also analyze our pruning masks and find them to be significantly different from the ones obtained using standard metrics.
translated by 谷歌翻译
The rapid growth of machine translation (MT) systems has necessitated comprehensive studies to meta-evaluate evaluation metrics being used, which enables a better selection of metrics that best reflect MT quality. Unfortunately, most of the research focuses on high-resource languages, mainly English, the observations for which may not always apply to other languages. Indian languages, having over a billion speakers, are linguistically different from English, and to date, there has not been a systematic study of evaluating MT systems from English into Indian languages. In this paper, we fill this gap by creating an MQM dataset consisting of 7000 fine-grained annotations, spanning 5 Indian languages and 7 MT systems, and use it to establish correlations between annotator scores and scores obtained using existing automatic metrics. Our results show that pre-trained metrics, such as COMET, have the highest correlations with annotator scores. Additionally, we find that the metrics do not adequately capture fluency-based errors in Indian languages, and there is a need to develop metrics focused on Indian languages. We hope that our dataset and analysis will help promote further research in this area.
translated by 谷歌翻译
We study algorithms for detecting and including glass objects in an optimization-based Simultaneous Localization and Mapping (SLAM) algorithm in this work. When LiDAR data is the primary exteroceptive sensory input, glass objects are not correctly registered. This occurs as the incident light primarily passes through the glass objects or reflects away from the source, resulting in inaccurate range measurements for glass surfaces. Consequently, the localization and mapping performance is impacted, thereby rendering navigation in such environments unreliable. Optimization-based SLAM solutions, which are also referred to as Graph SLAM, are widely regarded as state of the art. In this paper, we utilize a simple and computationally inexpensive glass detection scheme for detecting glass objects and present the methodology to incorporate the identified objects into the occupancy grid maintained by such an algorithm (Google Cartographer). We develop both local (submap level) and global algorithms for achieving the objective mentioned above and compare the maps produced by our method with those produced by an existing algorithm that utilizes particle filter based SLAM.
translated by 谷歌翻译
Explainable Artificial Intelligence (AI) in the form of an interpretable and semiautomatic approach to stage grading ocular pathologies such as Diabetic retinopathy, Hypertensive retinopathy, and other retinopathies on the backdrop of major systemic diseases. The experimental study aims to evaluate an explainable staged grading process without using deep Convolutional Neural Networks (CNNs) directly. Many current CNN-based deep neural networks used for diagnosing retinal disorders might have appreciable performance but fail to pinpoint the basis driving their decisions. To improve these decisions' transparency, we have proposed a clinician-in-the-loop assisted intelligent workflow that performs a retinal vascular assessment on the fundus images to derive quantifiable and descriptive parameters. The retinal vessel parameters meta-data serve as hyper-parameters for better interpretation and explainability of decisions. The semiautomatic methodology aims to have a federated approach to AI in healthcare applications with more inputs and interpretations from clinicians. The baseline process involved in the machine learning pipeline through image processing techniques for optic disc detection, vessel segmentation, and arteriole/venule identification.
translated by 谷歌翻译
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks. The project's website and videos can be found at robotics-transformer.github.io
translated by 谷歌翻译
Reflections on glossy objects contain valuable and hidden information about the surrounding environment. By converting these objects into cameras, we can unlock exciting applications, including imaging beyond the camera's field-of-view and from seemingly impossible vantage points, e.g. from reflections on the human eye. However, this task is challenging because reflections depend jointly on object geometry, material properties, the 3D environment, and the observer viewing direction. Our approach converts glossy objects with unknown geometry into radiance-field cameras to image the world from the object's perspective. Our key insight is to convert the object surface into a virtual sensor that captures cast reflections as a 2D projection of the 5D environment radiance field visible to the object. We show that recovering the environment radiance fields enables depth and radiance estimation from the object to its surroundings in addition to beyond field-of-view novel-view synthesis, i.e. rendering of novel views that are only directly-visible to the glossy object present in the scene, but not the observer. Moreover, using the radiance field we can image around occluders caused by close-by objects in the scene. Our method is trained end-to-end on multi-view images of the object and jointly estimates object geometry, diffuse radiance, and the 5D environment radiance field.
translated by 谷歌翻译