This paper describes the 5th edition of the Predicting Video Memorability Task as part of MediaEval2022. This year we have reorganised and simplified the task in order to lubricate a greater depth of inquiry. Similar to last year, two datasets are provided in order to facilitate generalisation, however, this year we have replaced the TRECVid2019 Video-to-Text dataset with the VideoMem dataset in order to remedy underlying data quality issues, and to prioritise short-term memorability prediction by elevating the Memento10k dataset as the primary dataset. Additionally, a fully fledged electroencephalography (EEG)-based prediction sub-task is introduced. In this paper, we outline the core facets of the task and its constituent sub-tasks; describing the datasets, evaluation metrics, and requirements for participant submissions.
translated by 谷歌翻译
The Predicting Media Memorability task in the MediaEval evaluation campaign has been running annually since 2018 and several different tasks and data sets have been used in this time. This has allowed us to compare the performance of many memorability prediction techniques on the same data and in a reproducible way and to refine and improve on those techniques. The resources created to compute media memorability are now being used by researchers well beyond the actual evaluation campaign. In this paper we present a summary of the task, including the collective lessons we have learned for the research community.
translated by 谷歌翻译
本文介绍了预测媒体难忘性的Mediaeval 2021,这是今年第4版的任务,因为短期和长期视频难忘性的预测仍然是一个具有挑战性的任务。在2021年,使用两个视频数据集:第一,TRECVID 2019视频到文本数据集的子集;其次,Memento10K数据集是为了提供探索交叉数据集泛化的机会。另外,介绍了基于脑电图(EEG)的预测导频子任务。在本文中,我们概述了任务的主要方面,并描述了参与者提交的数据集,评估指标和要求。
translated by 谷歌翻译
使用公共可用链路的集合,平均每周6秒的视频剪辑,每次,1,275用户多次手动注释每个视频,以指示视频的长期和短期难忘性。注释作为在线记忆游戏的一部分,并测量了参与者在显示视频的集合时先前召回过视频的能力。在前几分钟内看到的视频进行识别任务,以进行短期令人难忘,以便在前24到72小时内进行长期难忘。数据包括每个视频的每个识别的反应时间。与每个视频相关联是文本描述(标题)以及应用于从每个视频中提取的3帧的图像级别功能集合(开始,中间和结束)。还提供了视频级功能。数据集在视频难忘任务中使用,作为2020年的Mediaeval基准的一部分。
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
We introduce Structured 3D Features, a model based on a novel implicit 3D representation that pools pixel-aligned image features onto dense 3D points sampled from a parametric, statistical human mesh surface. The 3D points have associated semantics and can move freely in 3D space. This allows for optimal coverage of the person of interest, beyond just the body shape, which in turn, additionally helps modeling accessories, hair, and loose clothing. Owing to this, we present a complete 3D transformer-based attention framework which, given a single image of a person in an unconstrained pose, generates an animatable 3D reconstruction with albedo and illumination decomposition, as a result of a single end-to-end model, trained semi-supervised, and with no additional postprocessing. We show that our S3F model surpasses the previous state-of-the-art on various tasks, including monocular 3D reconstruction, as well as albedo and shading estimation. Moreover, we show that the proposed methodology allows novel view synthesis, relighting, and re-posing the reconstruction, and can naturally be extended to handle multiple input images (e.g. different views of a person, or the same view, in different poses, in video). Finally, we demonstrate the editing capabilities of our model for 3D virtual try-on applications.
translated by 谷歌翻译
我们提出了Blazepose Ghum整体,这是一种针对3D人体地标和姿势估计的轻型神经网络管道,专门针对实时的实时推论量身定制。Blazepose Ghum整体可以从单个RGB图像中捕获运动捕获,包括头像控制,健身跟踪和AR/VR效果。我们的主要贡献包括i)一种用于3D地面真相数据获取的新方法,ii)更新了3D身体跟踪,并使用其他手工标记和iii)从单眼图像中进行全身姿势估算。
translated by 谷歌翻译
用于3D人类传感的最新技术的进展目前受到3D地面真理的缺乏视觉数据集的限制,包括多个人,运动,在现实世界环境中运行,具有复杂的照明或遮挡,并且可能观察到移动相机。复杂的场景理解需要估计人类的姿势和形状以及手势,朝着最终将有用的度量和行为信号与自由视点相结合的表示来估计的表示。为了维持进步,我们建立了一个大型的照片 - 现实数据集,人类空间(HSPACE),用于复杂的合成室内和室外环境中的动画人。我们将百种不同的年龄,性别,比例和种族相结合,以及数百个动作和场景,以及身体形状的参数变化(总共1,600种不同的人类),以产生初始数据集超过100万帧。人类的动画是通过拟合表达的人体模型,以单身扫描人们来获得,其次是新的重新定位和定位程序,支持穿着人的人类的现实动画,身体比例的统计变化,以及联合一致的场景放置多个移动的人。资产在规模上自动生成,并与现有的实时渲染和游戏引擎兼容。具有评估服务器的数据集将可用于研究。我们的大规模分析了合成数据的影响,与实际数据和弱监管有关,强调了持续质量改进和限制了这种实际设置,与模型容量增加的实际设定的相当大的潜力。
translated by 谷歌翻译
Non-linear state-space models, also known as general hidden Markov models, are ubiquitous in statistical machine learning, being the most classical generative models for serial data and sequences in general. The particle-based, rapid incremental smoother PaRIS is a sequential Monte Carlo (SMC) technique allowing for efficient online approximation of expectations of additive functionals under the smoothing distribution in these models. Such expectations appear naturally in several learning contexts, such as likelihood estimation (MLE) and Markov score climbing (MSC). PARIS has linear computational complexity, limited memory requirements and comes with non-asymptotic bounds, convergence results and stability guarantees. Still, being based on self-normalised importance sampling, the PaRIS estimator is biased. Our first contribution is to design a novel additive smoothing algorithm, the Parisian particle Gibbs PPG sampler, which can be viewed as a PaRIS algorithm driven by conditional SMC moves, resulting in bias-reduced estimates of the targeted quantities. We substantiate the PPG algorithm with theoretical results, including new bounds on bias and variance as well as deviation inequalities. Our second contribution is to apply PPG in a learning framework, covering MLE and MSC as special examples. In this context, we establish, under standard assumptions, non-asymptotic bounds highlighting the value of bias reduction and the implicit Rao--Blackwellization of PPG. These are the first non-asymptotic results of this kind in this setting. We illustrate our theoretical results with numerical experiments supporting our claims.
translated by 谷歌翻译
In order for artificial neural networks to begin accurately mimicking biological ones, they must be able to adapt to new exigencies without forgetting what they have learned from previous training. Lifelong learning approaches to artificial neural networks attempt to strive towards this goal, yet have not progressed far enough to be realistically deployed for natural language processing tasks. The proverbial roadblock of catastrophic forgetting still gate-keeps researchers from an adequate lifelong learning model. While efforts are being made to quell catastrophic forgetting, there is a lack of research that looks into the importance of class ordering when training on new classes for incremental learning. This is surprising as the ordering of "classes" that humans learn is heavily monitored and incredibly important. While heuristics to develop an ideal class order have been researched, this paper examines class ordering as it relates to priming as a scheme for incremental class learning. By examining the connections between various methods of priming found in humans and how those are mimicked yet remain unexplained in life-long machine learning, this paper provides a better understanding of the similarities between our biological systems and the synthetic systems while simultaneously improving current practices to combat catastrophic forgetting. Through the merging of psychological priming practices with class ordering, this paper is able to identify a generalizable method for class ordering in NLP incremental learning tasks that consistently outperforms random class ordering.
translated by 谷歌翻译