诸如私人SGD之类的算法启用具有正式隐私保证的培训机器学习模型。但是,这种算法在理论上保证的保护与实践中提供的保护之间存在差异。一系列新兴的工作经验估计了差异私人培训作为隐私预算$ \ varepsilon $用于培训模型的置信区间提供的保护。现有方法从置信区间从置信区间获得了置信区间,以置信为误报和假阴性攻击。不幸的是,使用这种方法获得$ \ epsilon $的狭窄高信心间隔需要不切实际的样本量和训练与样品一样多的型号。我们提出了一种新颖的贝叶斯方法,可大大减少样本量,并适应和验证启发式方法,以绘制每个训练有素的模型多个样本。我们的贝叶斯方法利用了对差异隐私的假设测试解释,从$ \ varepsilon $(不仅仅是置信区间)获得后部的后验,这是从误报和假阴性的成员推理攻击的共同后部。对于相同的样本量和信心,我们以$ \ varepsilon $ 40%的狭窄范围比先前的工作得出置信区间。我们从仅标签DP适应的启发式方法可用于进一步减少最多2个数量级获得足够样品所需的训练模型数量。
translated by 谷歌翻译
我们为大规模训练的大规模训练语言模型提供了更简单,更稀疏,更快的算法,这些算法在许多标准的NLP任务上实现了最新的隐私与实用性权衡。我们为此问题提出了一个元框架,这是受高度参数效率方法进行微调成功的启发。我们的实验表明,这些方法的差异化适应能力在三个重要方面优于以前的私人算法:实用程序,隐私以及私人培训的计算和记忆成本。在许多经常研究的数据集中,私人模型的实用性接近了非私人模型的方法。例如,在MNLI数据集上,我们使用Roberta-large的准确度为87.8 \%$,使用Roberta-Base $ 83.5 \%$,其隐私预算为$ \ Epsilon = 6.7 $。相比之下,缺乏隐私限制,罗伯塔·莱格(Roberta-Large)的准确度为$ 90.2 \%$。我们的发现对于自然语言生成任务类似。与DART,GPT-2-SMALL,GPT-2中,GPT-2-MEDIUM,GPT-2-LARGE和GPT-2-XL的私人微调达到38.5、42.0、43.1和43.8($ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 43.8) epsilon = 6.8,\ delta = $ 1E-5),而非私人基线为$ 48.1 $。我们所有的实验都表明,较大的模型更适合私人微调:虽然众所周知,它们旨在非优先实现卓越的准确性,但我们发现当引入隐私时,它们也更好地保持其准确性。
translated by 谷歌翻译
Deep learning models are known to put the privacy of their training data at risk, which poses challenges for their safe and ethical release to the public. Differentially private stochastic gradient descent is the de facto standard for training neural networks without leaking sensitive information about the training data. However, applying it to models for graph-structured data poses a novel challenge: unlike with i.i.d. data, sensitive information about a node in a graph cannot only leak through its gradients, but also through the gradients of all nodes within a larger neighborhood. In practice, this limits privacy-preserving deep learning on graphs to very shallow graph neural networks. We propose to solve this issue by training graph neural networks on disjoint subgraphs of a given training graph. We develop three random-walk-based methods for generating such disjoint subgraphs and perform a careful analysis of the data-generating distributions to provide strong privacy guarantees. Through extensive experiments, we show that our method greatly outperforms the state-of-the-art baseline on three large graphs, and matches or outperforms it on four smaller ones.
translated by 谷歌翻译
A universal kernel is constructed whose sections approximate any causal and time-invariant filter in the fading memory category with inputs and outputs in a finite-dimensional Euclidean space. This kernel is built using the reservoir functional associated with a state-space representation of the Volterra series expansion available for any analytic fading memory filter. It is hence called the Volterra reservoir kernel. Even though the state-space representation and the corresponding reservoir feature map are defined on an infinite-dimensional tensor algebra space, the kernel map is characterized by explicit recursions that are readily computable for specific data sets when employed in estimation problems using the representer theorem. We showcase the performance of the Volterra reservoir kernel in a popular data science application in relation to bitcoin price prediction.
translated by 谷歌翻译
Heating in private households is a major contributor to the emissions generated today. Heat pumps are a promising alternative for heat generation and are a key technology in achieving our goals of the German energy transformation and to become less dependent on fossil fuels. Today, the majority of heat pumps in the field are controlled by a simple heating curve, which is a naive mapping of the current outdoor temperature to a control action. A more advanced control approach is model predictive control (MPC) which was applied in multiple research works to heat pump control. However, MPC is heavily dependent on the building model, which has several disadvantages. Motivated by this and by recent breakthroughs in the field, this work applies deep reinforcement learning (DRL) to heat pump control in a simulated environment. Through a comparison to MPC, it could be shown that it is possible to apply DRL in a model-free manner to achieve MPC-like performance. This work extends other works which have already applied DRL to building heating operation by performing an in-depth analysis of the learned control strategies and by giving a detailed comparison of the two state-of-the-art control methods.
translated by 谷歌翻译
Human motion prediction is a complex task as it involves forecasting variables over time on a graph of connected sensors. This is especially true in the case of few-shot learning, where we strive to forecast motion sequences for previously unseen actions based on only a few examples. Despite this, almost all related approaches for few-shot motion prediction do not incorporate the underlying graph, while it is a common component in classical motion prediction. Furthermore, state-of-the-art methods for few-shot motion prediction are restricted to motion tasks with a fixed output space meaning these tasks are all limited to the same sensor graph. In this work, we propose to extend recent works on few-shot time-series forecasting with heterogeneous attributes with graph neural networks to introduce the first few-shot motion approach that explicitly incorporates the spatial graph while also generalizing across motion tasks with heterogeneous sensors. In our experiments on motion tasks with heterogeneous sensors, we demonstrate significant performance improvements with lifts from 10.4% up to 39.3% compared to best state-of-the-art models. Moreover, we show that our model can perform on par with the best approach so far when evaluating on tasks with a fixed output space while maintaining two magnitudes fewer parameters.
translated by 谷歌翻译
This project leverages advances in multi-agent reinforcement learning (MARL) to improve the efficiency and flexibility of order-picking systems for commercial warehouses. We envision a warehouse of the future in which dozens of mobile robots and human pickers work together to collect and deliver items within the warehouse. The fundamental problem we tackle, called the order-picking problem, is how these worker agents must coordinate their movement and actions in the warehouse to maximise performance (e.g. order throughput) under given resource constraints. Established industry methods using heuristic approaches require large engineering efforts to optimise for innately variable warehouse configurations. In contrast, the MARL framework can be flexibly applied to any warehouse configuration (e.g. size, layout, number/types of workers, item replenishment frequency) and the agents learn via a process of trial-and-error how to optimally cooperate with one another. This paper details the current status of the R&D effort initiated by Dematic and the University of Edinburgh towards a general-purpose and scalable MARL solution for the order-picking problem in realistic warehouses.
translated by 谷歌翻译
Telling stories is an integral part of human communication which can evoke emotions and influence the affective states of the audience. Automatically modelling emotional trajectories in stories has thus attracted considerable scholarly interest. However, as most existing works have been limited to unsupervised dictionary-based approaches, there is no labelled benchmark for this task. We address this gap by introducing continuous valence and arousal annotations for an existing dataset of children's stories annotated with discrete emotion categories. We collect additional annotations for this data and map the originally categorical labels to the valence and arousal space. Leveraging recent advances in Natural Language Processing, we propose a set of novel Transformer-based methods for predicting valence and arousal signals over the course of written stories. We explore several strategies for fine-tuning a pretrained ELECTRA model and study the benefits of considering a sentence's context when inferring its emotionality. Moreover, we experiment with additional LSTM and Transformer layers. The best configuration achieves a Concordance Correlation Coefficient (CCC) of .7338 for valence and .6302 for arousal on the test set, demonstrating the suitability of our proposed approach. Our code and additional annotations are made available at https://github.com/lc0197/emotion_modelling_stories.
translated by 谷歌翻译
Automatic video captioning aims for a holistic visual scene understanding. It requires a mechanism for capturing temporal context in video frames and the ability to comprehend the actions and associations of objects in a given timeframe. Such a system should additionally learn to abstract video sequences into sensible representations as well as to generate natural written language. While the majority of captioning models focus solely on the visual inputs, little attention has been paid to the audiovisual modality. To tackle this issue, we propose a novel two-fold approach. First, we implement a reward-guided KL Divergence to train a video captioning model which is resilient towards token permutations. Second, we utilise a Bi-Modal Hierarchical Reinforcement Learning (BMHRL) Transformer architecture to capture long-term temporal dependencies of the input data as a foundation for our hierarchical captioning module. Using our BMHRL, we show the suitability of the HRL agent in the generation of content-complete and grammatically sound sentences by achieving $4.91$, $2.23$, and $10.80$ in BLEU3, BLEU4, and METEOR scores, respectively on the ActivityNet Captions dataset. Finally, we make our BMHRL framework and trained models publicly available for users and developers at https://github.com/d-rothen/bmhrl.
translated by 谷歌翻译
State-of-the-art performance in electroencephalography (EEG) decoding tasks is currently often achieved with either Deep-Learning or Riemannian-Geometry-based decoders. Recently, there is growing interest in Deep Riemannian Networks (DRNs) possibly combining the advantages of both previous classes of methods. However, there are still a range of topics where additional insight is needed to pave the way for a more widespread application of DRNs in EEG. These include architecture design questions such as network size and end-to-end ability as well as model training questions. How these factors affect model performance has not been explored. Additionally, it is not clear how the data within these networks is transformed, and whether this would correlate with traditional EEG decoding. Our study aims to lay the groundwork in the area of these topics through the analysis of DRNs for EEG with a wide range of hyperparameters. Networks were tested on two public EEG datasets and compared with state-of-the-art ConvNets. Here we propose end-to-end EEG SPDNet (EE(G)-SPDNet), and we show that this wide, end-to-end DRN can outperform the ConvNets, and in doing so use physiologically plausible frequency regions. We also show that the end-to-end approach learns more complex filters than traditional band-pass filters targeting the classical alpha, beta, and gamma frequency bands of the EEG, and that performance can benefit from channel specific filtering approaches. Additionally, architectural analysis revealed areas for further improvement due to the possible loss of Riemannian specific information throughout the network. Our study thus shows how to design and train DRNs to infer task-related information from the raw EEG without the need of handcrafted filterbanks and highlights the potential of end-to-end DRNs such as EE(G)-SPDNet for high-performance EEG decoding.
translated by 谷歌翻译