Dynamic treatment regimes assign personalized treatments to patients sequentially over time based on their baseline information and time-varying covariates. In mobile health applications, these covariates are typically collected at different frequencies over a long time horizon. In this paper, we propose a deep spectral Q-learning algorithm, which integrates principal component analysis (PCA) with deep Q-learning to handle the mixed frequency data. In theory, we prove that the mean return under the estimated optimal policy converges to that under the optimal one and establish its rate of convergence. The usefulness of our proposal is further illustrated via simulations and an application to a diabetes dataset.
translated by 谷歌翻译
Practical applications employing deep learning must guarantee inference quality. However, we found that the inference quality of state-of-the-art and state-of-the-practice in practical applications has a long tail distribution. In the real world, many tasks have strict requirements for the quality of deep learning inference, such as safety-critical and mission-critical tasks. The fluctuation of inference quality seriously affects its practical applications, and the quality at the tail may lead to severe consequences. State-of-the-art and state-of-the-practice with outstanding inference quality designed and trained under loose constraints still have poor inference quality under constraints with practical application significance. On the one hand, the neural network models must be deployed on complex systems with limited resources. On the other hand, safety-critical and mission-critical tasks need to meet more metric constraints while ensuring high inference quality. We coin a new term, ``tail quality,'' to characterize this essential requirement and challenge. We also propose a new metric, ``X-Critical-Quality,'' to measure the inference quality under certain constraints. This article reveals factors contributing to the failure of using state-of-the-art and state-of-the-practice algorithms and systems in real scenarios. Therefore, we call for establishing innovative methodologies and tools to tackle this enormous challenge.
translated by 谷歌翻译
Transformer models have achieved superior performance in various natural language processing tasks. However, the quadratic computational cost of the attention mechanism limits its practicality for long sequences. There are existing attention variants that improve the computational efficiency, but they have limited ability to effectively compute global information. In parallel to Transformer models, state space models (SSMs) are tailored for long sequences, but they are not flexible enough to capture complicated local information. We propose SPADE, short for $\underline{\textbf{S}}$tate s$\underline{\textbf{P}}$ace $\underline{\textbf{A}}$ugmente$\underline{\textbf{D}}$ Transform$\underline{\textbf{E}}$r. Specifically, we augment a SSM into the bottom layer of SPADE, and we employ efficient local attention methods for the other layers. The SSM augments global information, which complements the lack of long-range dependency issue in local attention methods. Experimental results on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method. To further demonstrate the scalability of SPADE, we pre-train large encoder-decoder models and present fine-tuning results on natural language understanding and natural language generation tasks.
translated by 谷歌翻译
The mainstream crowd counting methods regress density map and integrate it to obtain counting results. Since the density representation to one head accords to its adjacent distribution, it embeds the same category objects with variant values, while human beings counting models the invariant features namely similarity to objects. Inspired by this, we propose a rational and anthropoid crowd counting framework. To begin with, we leverage counting scalar as supervision signal, which provides global and implicit guidance to similar matters. Then, the large kernel CNN is utilized to imitate the paradigm of human beings which models invariant knowledge firstly and slides to compare similarity. Later, re-parameterization on pre-trained paralleled parameters is presented to cater to the inner-class variance on similarity comparison. Finally, the Random Scaling patches Yield (RSY) is proposed to facilitate similarity modeling on long distance dependencies. Extensive experiments on five challenging benchmarks in crowd counting show the proposed framework achieves state-of-the-art.
translated by 谷歌翻译
Lifelong person re-identification (LReID) is in significant demand for real-world development as a large amount of ReID data is captured from diverse locations over time and cannot be accessed at once inherently. However, a key challenge for LReID is how to incrementally preserve old knowledge and gradually add new capabilities to the system. Unlike most existing LReID methods, which mainly focus on dealing with catastrophic forgetting, our focus is on a more challenging problem, which is, not only trying to reduce the forgetting on old tasks but also aiming to improve the model performance on both new and old tasks during the lifelong learning process. Inspired by the biological process of human cognition where the somatosensory neocortex and the hippocampus work together in memory consolidation, we formulated a model called Knowledge Refreshing and Consolidation (KRC) that achieves both positive forward and backward transfer. More specifically, a knowledge refreshing scheme is incorporated with the knowledge rehearsal mechanism to enable bi-directional knowledge transfer by introducing a dynamic memory model and an adaptive working model. Moreover, a knowledge consolidation scheme operating on the dual space further improves model stability over the long term. Extensive evaluations show KRC's superiority over the state-of-the-art LReID methods on challenging pedestrian benchmarks.
translated by 谷歌翻译
This paper introduced key aspects of applying Machine Learning (ML) models, improved trading strategies, and the Quasi-Reversibility Method (QRM) to optimize stock option forecasting and trading results. It presented the findings of the follow-up project of the research "Application of Convolutional Neural Networks with Quasi-Reversibility Method Results for Option Forecasting". First, the project included an application of Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks to provide a novel way of predicting stock option trends. Additionally, it examined the dependence of the ML models by evaluating the experimental method of combining multiple ML models to improve prediction results and decision-making. Lastly, two improved trading strategies and simulated investing results were presented. The Binomial Asset Pricing Model with discrete time stochastic process analysis and portfolio hedging was applied and suggested an optimized investment expectation. These results can be utilized in real-life trading strategies to optimize stock option investment results based on historical data.
translated by 谷歌翻译
The domain of joint vision-language understanding, especially in the context of reasoning in Visual Question Answering (VQA) models, has garnered significant attention in the recent past. While most of the existing VQA models focus on improving the accuracy of VQA, the way models arrive at an answer is oftentimes a black box. As a step towards making the VQA task more explainable and interpretable, our method is built upon the SOTA VQA framework by augmenting it with an end-to-end explanation generation module. In this paper, we investigate two network architectures, including Long Short-Term Memory (LSTM) and Transformer decoder, as the explanation generator. Our method generates human-readable textual explanations while maintaining SOTA VQA accuracy on the GQA-REX (77.49%) and VQA-E (71.48%) datasets. Approximately 65.16% of the generated explanations are approved by humans as valid. Roughly 60.5% of the generated explanations are valid and lead to the correct answers.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Video super-resolution is one of the most popular tasks on mobile devices, being widely used for an automatic improvement of low-bitrate and low-resolution video streams. While numerous solutions have been proposed for this problem, they are usually quite computationally demanding, demonstrating low FPS rates and power efficiency on mobile devices. In this Mobile AI challenge, we address this problem and propose the participants to design an end-to-end real-time video super-resolution solution for mobile NPUs optimized for low energy consumption. The participants were provided with the REDS training dataset containing video sequences for a 4X video upscaling task. The runtime and power efficiency of all models was evaluated on the powerful MediaTek Dimensity 9000 platform with a dedicated AI processing unit capable of accelerating floating-point and quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 500 FPS rate and 0.2 [Watt / 30 FPS] power consumption. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译