但是,强化学习(RL)已应用于攻击渗透测试的攻击图,但是,受过训练的药物并不能反映现实,因为攻击图缺乏在战场的智能准备中通常捕获的操作细微差别(IPB),包括(网络)地形的概念。特别是,当前的实践构建攻击图专门使用常见漏洞评分系统(CVSS)及其组件。我们介绍了使用IPB概念在网络地形分析的障碍,接近途径,关键地形,观察和火场以及掩盖和隐藏的网络地形分析中构建攻击图的方法。我们在一个示例中演示了我们的方法,其中防火墙被视为障碍,并在(1)奖励空间和(2)状态动力学中表示。我们表明,地形分析可用于使现实主义攻击RL的图形。
translated by 谷歌翻译
The proliferation of automatic faithfulness metrics for summarization has produced a need for benchmarks to evaluate them. While existing benchmarks measure the correlation with human judgements of faithfulness on model-generated summaries, they are insufficient for diagnosing whether metrics are: 1) consistent, i.e., decrease as errors are introduced into a summary, 2) effective on human-written texts, and 3) sensitive to different error types (as summaries can contain multiple errors). To address these needs, we present a benchmark of unfaithful minimal pairs (BUMP), a dataset of 889 human-written, minimally different summary pairs, where a single error (from an ontology of 7 types) is introduced to a summary from the CNN/DailyMail dataset to produce an unfaithful summary. We find BUMP complements existing benchmarks in a number of ways: 1) the summaries in BUMP are harder to discriminate and less probable under SOTA summarization models, 2) BUMP enables measuring the consistency of metrics, and reveals that the most discriminative metrics tend not to be the most consistent, 3) BUMP enables the measurement of metrics' performance on individual error types and highlights areas of weakness for future work.
translated by 谷歌翻译
Open-textured terms in written rules are typically settled through interpretive argumentation. Ongoing work has attempted to catalogue the schemes used in such interpretive argumentation. But how can the use of these schemes affect the way in which people actually use and reason over the proper interpretations of open-textured terms? Using the interpretive argument-eliciting game Aporia as our framework, we carried out an empirical study to answer this question. Differing from previous work, we did not allow participants to argue for interpretations arbitrarily, but to only use arguments that fit with a given set of interpretive argument templates. Finally, we analyze the results captured by this new dataset, specifically focusing on practical implications for the development of interpretation-capable artificial reasoners.
translated by 谷歌翻译
Micron-scale robots (ubots) have recently shown great promise for emerging medical applications, and accurate control of ubots is a critical next step to deploying them in real systems. In this work, we develop the idea of a nonlinear mismatch controller to compensate for the mismatch between the disturbed unicycle model of a rolling ubot and trajectory data collected during an experiment. We exploit the differential flatness property of the rolling ubot model to generate a mapping from the desired state trajectory to nominal control actions. Due to model mismatch and parameter estimation error, the nominal control actions will not exactly reproduce the desired state trajectory. We employ a Gaussian Process (GP) to learn the model mismatch as a function of the desired control actions, and correct the nominal control actions using a least-squares optimization. We demonstrate the performance of our online learning algorithm in simulation, where we show that the model mismatch makes some desired states unreachable. Finally, we validate our approach in an experiment and show that the error metrics are reduced by up to 40%.
translated by 谷歌翻译
We introduce an unsupervised learning approach that combines the truncated singular value decomposition with convex clustering to estimate within-cluster directions of maximum variance/covariance (in the variables) while simultaneously hierarchically clustering (on observations). In contrast to previous work on joint clustering and embedding, our approach has a straightforward formulation, is readily scalable via distributed optimization, and admits a direct interpretation as hierarchically clustered principal component analysis (PCA) or hierarchically clustered canonical correlation analysis (CCA). Through numerical experiments and real-world examples relevant to precision medicine, we show that our approach outperforms traditional and contemporary clustering methods on underdetermined problems ($p \gg N$ with tens of observations) and scales to large datasets (e.g., $N=100,000$; $p=1,000$) while yielding interpretable dendrograms of hierarchical per-cluster principal components or canonical variates.
translated by 谷歌翻译
As robotic systems continue to address emerging issues in areas such as logistics, mobility, manufacturing, and disaster response, it is increasingly important to rapidly generate safe and energy-efficient trajectories. In this article, we present a new approach to plan energy-optimal trajectories through cluttered environments containing polygonal obstacles. In particular, we develop a method to quickly generate optimal trajectories for a double-integrator system, and we show that optimal path planning reduces to an integer program. To find an efficient solution, we present a distance-informed prefix search to efficiently generate optimal trajectories for a large class of environments. We demonstrate that our approach, while matching the performance of RRT* and Probabilistic Road Maps in terms of path length, outperforms both in terms of energy cost and computational time by up to an order of magnitude. We also demonstrate that our approach yields implementable trajectories in an experiment with a Crazyflie quadrotor.
translated by 谷歌翻译
Governments, industry, and academia have undertaken efforts to identify and mitigate harms in ML-driven systems, with a particular focus on social and ethical risks of ML components in complex sociotechnical systems. However, existing approaches are largely disjointed, ad-hoc and of unknown effectiveness. Systems safety engineering is a well established discipline with a track record of identifying and managing risks in many complex sociotechnical domains. We adopt the natural hypothesis that tools from this domain could serve to enhance risk analyses of ML in its context of use. To test this hypothesis, we apply a "best of breed" systems safety analysis, Systems Theoretic Process Analysis (STPA), to a specific high-consequence system with an important ML-driven component, namely the Prescription Drug Monitoring Programs (PDMPs) operated by many US States, several of which rely on an ML-derived risk score. We focus in particular on how this analysis can extend to identifying social and ethical risks and developing concrete design-level controls to mitigate them.
translated by 谷歌翻译
在过去的二十年中,对机器人羊群的研究受到了极大的关注。在本文中,我们提出了一种约束驱动的控制算法,该算法可最大程度地减少单个试剂的能耗并产生新兴的V形成。随着代理之间的分散相互作用的形成出现,我们的方法对自发添加或将代理去除为系统是强大的。首先,我们提出了一个分析模型,用于在固定翼无人机后面的尾巴上洗涤,并得出了尾随无人机以最大化其旅行耐力的最佳空气速度。接下来,我们证明,简单地在最佳空速上飞行将永远不会导致新兴的羊群行为,并且我们提出了一种新的分散的“ Anseroid”行为,从而产生出现的V形成。我们用约束驱动的控制算法编码这些行为,该算法最小化每个无人机的机车能力。最后,我们证明,在我们提出的控制法律下,以近似V或eChelon形成初始化的无人机将融合,我们证明了这种出现在模拟和与Crazyflie四肢旋转机队的实验中实时发生。
translated by 谷歌翻译
眼睛的临床诊断是对多种数据模式进行的,包括标量临床标签,矢量化生物标志物,二维底面图像和三维光学相干性层析成像(OCT)扫描。临床从业者使用所有可用的数据模式来诊断和治疗糖尿病性视网膜病(DR)或糖尿病黄斑水肿(DME)等眼部疾病。在眼科医学领域启用机器学习算法的使用需要研究治疗期内所有相关数据之间的关系和相互作用。现有的数据集受到限制,因为它们既不提供数据,也没有考虑数据模式之间的显式关系建模。在本文中,我们介绍了用于研究以上限制的视觉眼睛语义(橄榄)数据集的眼科标签。这是第一个OCT和近IIR眼底数据集,其中包括临床标签,生物标记标签,疾病标签和时间序列的患者治疗信息,来自相关临床试验。该数据集由1268个近红外图像组成,每个图像至少具有49个10月扫描和16个生物标志物,以及4个临床标签和DR或DME的疾病诊断。总共有96张眼睛的数据在至少两年的时间内平均,每只眼睛平均治疗66周和7次注射。我们在医学图像分析中为橄榄数据集进行了橄榄数据集的实用性,并为核心和新兴机器学习范式提供了基准和具体研究方向。
translated by 谷歌翻译
这项研究探讨了知识组织系统(KOS)中的时间概念漂移和时间对齐。使用1910年国会主题标题,2020快速主题和自动索引进行比较分析。用例涉及90个19世纪的大不列颠百科全书。条目使用两种方法进行索引:1)全文索引; 2)使用1910 LCSH和快速主题的辅助跨学科词汇应用程序(HIVE),使用STANZA,Stanford的NLP工具包上的条件进行了命名实体识别。分析的重点是三个目标:1)确定1910年LCSH输出独有的结果; 2)在当代LCSH中删除的独家集合中的术语,证明了时间概念漂移; 3)探索这些弃用条款的历史意义。结果证实,历史词汇可用于生成过时的主题标题,代表了KOS和历史资源的概念漂移。做出了一种方法上的贡献,证明了如何随着时间的推移研究KOS的变化并改善历史人文资源的情境化。
translated by 谷歌翻译