预测+优化是一个常见的真实范式,在那里我们必须在解决优化问题之前预测问题参数。然而,培训预测模型的标准通常与下游优化问题的目标不一致。最近,已经提出了集中的预测方法,例如Spo +和直接优化,以填补这种差距。但是,它们不能直接处理许多真实目标所需的$最大$算子的软限制。本文提出了一种用于现实世界线性和半定义负二次编程问题的新型分析微弱的代理目标框架,具有软线和非负面的硬度约束。该框架给出了约束乘法器上的理论界限,并导出了关于预测参数的闭合形式解决方案,从而导出问题中的任何变量的梯度。我们在使用软限制扩展的三个应用程序中评估我们的方法:合成线性规划,产品组合优化和资源供应,表明我们的方法优于传统的双阶段方法和其他集中决定的方法。
translated by 谷歌翻译
随着机器学习模型在自动驾驶汽车(AV)的运动预测系统上变得越来越普遍,至关重要的是,我们必须确保模型预测是安全可靠的。但是,详尽地收集和标记充分测试稀有和挑战性场景的长尾所需的数据是困难且昂贵的。在这项工作中,我们构建了一个新的基准测试,用于通过将扰动应用于现有数据来评估和改善模型鲁棒性。具体而言,我们进行了广泛的标签努力,以识别因果因素,或者在Waymo Open Motion数据集(WOMD)中以任何方式影响人类驾驶员行为的代理,我们使用这些标签来通过删除非carusal剂来扰动数据从现场。然后,我们在我们提出的基准上评估了一套各种最先进的深度学习模型体系结构,并发现所有模型在扰动下均显示出很大的变化。在非作业扰动下,我们观察到$ 25 $ - $ 38 \%$ $相对变化,而与原始相比。然后,我们研究以提高模型鲁棒性的技术,包括增加训练数据集的大小以及使用靶向数据增强,这些数据增加在整个培训过程中都放下了代理。我们计划提供因果代理标签作为womd的附加属性,并释放稳健性基准,以帮助社区建立更可靠和安全的深度学习模型,以进行运动预测。
translated by 谷歌翻译
变压器最近展示了改进视觉跟踪算法的明显潜力。尽管如此,基于变压器的跟踪器主要使用变压器熔断并增强由卷积神经网络(CNNS)产生的功能。相比之下,在本文中,我们提出了一个完全基于注意力的变压器跟踪算法,Swin-Cranstormer Tracker(SwintRack)。 SwintRack使用变压器进行特征提取和特征融合,允许目标对象和搜索区域之间的完全交互进行跟踪。为了进一步提高性能,我们调查了全面的不同策略,用于特征融合,位置编码和培训损失。所有这些努力都使SwintRack成为一个简单但坚实的基线。在我们的彻底实验中,SwintRack在leasot上设置了一个新的记录,在4.6 \%的情况下超过4.6 \%,同时仍然以45 fps运行。此外,它达到了最先进的表演,0.483 Suc,0.832 Suc和0.694 Ao,其他具有挑战性的leasot _ {ext} $,trackingnet和got-10k。我们的实施和培训型号可在HTTPS://github.com/litinglin/swintrack获得。
translated by 谷歌翻译
当自治车辆仍然努力解决在路上驾驶期间解决具有挑战性的情况时,人类长期以来一直掌握具有高效可转移和适应性的驱动能力的推动的本质。通过在驾驶期间模仿人的认知模型和语义理解,我们呈现帽子,一个分层框架,在多助手密集交通环境中产生高质量的驾驶行为。我们的方法层次地由高级意图识别和低级动作生成策略组成。通过语义子任务定义和通用状态表示,分层框架可在不同的驱动方案上传输。此外,我们的模型还能够通过在线适应模块捕获个人和场景之间的驾驶行为的变化。我们展示了在交叉路口和环形交叉路口的真实交通数据的轨迹预测任务中的算法,我们对该提出的方法进行了广泛的研究,并证明了我们的方法在预测准确性和可转移性方面的方式表现出其他方法。
translated by 谷歌翻译
随着越来越多的自主车辆(AVS)正在公共道路上部署,为他们设计的社会兼容行为变得越来越重要。为了产生安全和有效的行动,AVS不仅需要预测其他交通参与者的未来行为,而且需要意识到与这种行为预测相关的不确定性。在本文中,我们提出了一个不确定的综合预测和规划(UAPP)框架。它允许AVS推断在线其他道路用户的特征,并不仅可以为自己的奖励提供优化的行为,也可以对他人提供礼貌,以及他们对预测不确定性的信心。我们首先提出了礼貌和信心的定义。基于此,探讨了对互动驾驶场景中AVS行为的影响。此外,我们通过将产生的行为与地面真理进行比较来评估自然主义人类驾驶数据的提议算法。结果表明,在线推断可以显着提高所产生行为的人类肖像。此外,我们发现人类的司机对他人表示非常适合那些没有权利的人。我们还发现,这种驾驶偏好在不同的文化中有所不同。
translated by 谷歌翻译
Deep learning models can achieve high accuracy when trained on large amounts of labeled data. However, real-world scenarios often involve several challenges: Training data may become available in installments, may originate from multiple different domains, and may not contain labels for training. Certain settings, for instance medical applications, often involve further restrictions that prohibit retention of previously seen data due to privacy regulations. In this work, to address such challenges, we study unsupervised segmentation in continual learning scenarios that involve domain shift. To that end, we introduce GarDA (Generative Appearance Replay for continual Domain Adaptation), a generative-replay based approach that can adapt a segmentation model sequentially to new domains with unlabeled data. In contrast to single-step unsupervised domain adaptation (UDA), continual adaptation to a sequence of domains enables leveraging and consolidation of information from multiple domains. Unlike previous approaches in incremental UDA, our method does not require access to previously seen data, making it applicable in many practical scenarios. We evaluate GarDA on two datasets with different organs and modalities, where it substantially outperforms existing techniques.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
Compressed videos often exhibit visually annoying artifacts, known as Perceivable Encoding Artifacts (PEAs), which dramatically degrade video visual quality. Subjective and objective measures capable of identifying and quantifying various types of PEAs are critical in improving visual quality. In this paper, we investigate the influence of four spatial PEAs (i.e. blurring, blocking, bleeding, and ringing) and two temporal PEAs (i.e. flickering and floating) on video quality. For spatial artifacts, we propose a visual saliency model with a low computational cost and higher consistency with human visual perception. In terms of temporal artifacts, self-attention based TimeSFormer is improved to detect temporal artifacts. Based on the six types of PEAs, a quality metric called Saliency-Aware Spatio-Temporal Artifacts Measurement (SSTAM) is proposed. Experimental results demonstrate that the proposed method outperforms state-of-the-art metrics. We believe that SSTAM will be beneficial for optimizing video coding techniques.
translated by 谷歌翻译
We propose a distributionally robust return-risk model for Markov decision processes (MDPs) under risk and reward ambiguity. The proposed model optimizes the weighted average of mean and percentile performances, and it covers the distributionally robust MDPs and the distributionally robust chance-constrained MDPs (both under reward ambiguity) as special cases. By considering that the unknown reward distribution lies in a Wasserstein ambiguity set, we derive the tractable reformulation for our model. In particular, we show that that the return-risk model can also account for risk from uncertain transition kernel when one only seeks deterministic policies, and that a distributionally robust MDP under the percentile criterion can be reformulated as its nominal counterpart at an adjusted risk level. A scalable first-order algorithm is designed to solve large-scale problems, and we demonstrate the advantages of our proposed model and algorithm through numerical experiments.
translated by 谷歌翻译