该论文旨在通过将模糊几何逻辑语言添加模态来开发一个结构模糊几何逻辑的框架。使用煤层的方法,以模糊的几何逻辑语言引入了模态算子。为了定义模态运算符,我们引入了模糊开放的谓词举重的概念。基于类别$ \ textbf {fuzzy-top} $模糊拓扑空间和模糊连续地图的类别$ \ textbf {fuzzy-top} $ t $ t $ t $ the的基础,我们建立了为calgeberaic Fuzzy几何逻辑建立模型。在这项工作中讨论了定义模型的两次仿真。
translated by 谷歌翻译
Machine Translation (MT) system generally aims at automatic representation of source language into target language retaining the originality of context using various Natural Language Processing (NLP) techniques. Among various NLP methods, Statistical Machine Translation(SMT). SMT uses probabilistic and statistical techniques to analyze information and conversion. This paper canvasses about the development of bilingual SMT models for translating English to fifteen low-resource Indian Languages (ILs) and vice versa. At the outset, all 15 languages are briefed with a short description related to our experimental need. Further, a detailed analysis of Samanantar and OPUS dataset for model building, along with standard benchmark dataset (Flores-200) for fine-tuning and testing, is done as a part of our experiment. Different preprocessing approaches are proposed in this paper to handle the noise of the dataset. To create the system, MOSES open-source SMT toolkit is explored. Distance reordering is utilized with the aim to understand the rules of grammar and context-dependent adjustments through a phrase reordering categorization framework. In our experiment, the quality of the translation is evaluated using standard metrics such as BLEU, METEOR, and RIBES
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Multi-Task Learning (MTL) has shown its importance at user products for fast training, data efficiency, reduced overfitting etc. MTL achieves it by sharing the network parameters and training a network for multiple tasks simultaneously. However, MTL does not provide the solution, if each task needs training from a different dataset. In order to solve the stated problem, we have proposed an architecture named TreeDNN along with it's training methodology. TreeDNN helps in training the model with multiple datasets simultaneously, where each branch of the tree may need a different training dataset. We have shown in the results that TreeDNN provides competitive performance with the advantage of reduced ROM requirement for parameter storage and increased responsiveness of the system by loading only specific branch at inference time.
translated by 谷歌翻译
机器翻译系统(MTS)是通过将文本或语音从一种语言转换为另一种语言的有效工具。在像印度这样的大型多语言环境中,对有效的翻译系统的需求变得显而易见,英语和一套印度语言(ILS)正式使用。与英语相反,由于语料库的不可用,IL仍然被视为低资源语言。为了解决不对称性质,多语言神经机器翻译(MNMT)系统会发展为在这个方向上的理想方法。在本文中,我们提出了一个MNMT系统,以解决与低资源语言翻译有关的问题。我们的模型包括两个MNMT系统,即用于英语印度(一对多),另一个用于指示英语(多一对多),其中包含15个语言对(30个翻译说明)的共享编码器码头。由于大多数IL对具有很少的平行语料库,因此不足以训练任何机器翻译模型。我们探索各种增强策略,以通过建议的模型提高整体翻译质量。最先进的变压器体系结构用于实现所提出的模型。大量数据的试验揭示了其优越性比常规模型的优势。此外,本文解决了语言关系的使用(在方言,脚本等方面),尤其是关于同一家族的高资源语言在提高低资源语言表现方面的作用。此外,实验结果还表明了ILS的倒退和域适应性的优势,以提高源和目标语言的翻译质量。使用所有这些关键方法,我们提出的模型在评估指标方面比基线模型更有效,即一组ILS的BLEU(双语评估研究)得分。
translated by 谷歌翻译
在推理时间检测到分布(OOD)数据对于机器学习的许多应用至关重要。我们提出Xood:一个新型的基于极值的OOD检测框架,用于图像分类,由两种算法组成。第一个是Xood-M完全无监督,而第二个Xood-L则是自我监督的。两种算法都依赖于神经网络激活层中数据的极端值捕获的信号,以区分分布和OOD实例。我们通过实验表明,Xood-M和Xood-l均优于效率和准确性的许多基准数据集的最先进的OOD检测方法,从而将虚假阳性率(FPR95)降低了50%,同时改善了推论时间数量级。
translated by 谷歌翻译
最紧迫的社会问题之一是与虚假新闻的斗争。虚假的主张很难暴露,造成了很多损害。为了解决这个问题,事实验证变得至关重要,因此是不同研究社区中感兴趣的话题。仅使用数据的文本形式,我们建议解决问题的解决方案,并通过其他方法实现竞争结果。我们基于两种方法(基于训练的语言模型)基于两种方法和基于提示的方法提供解决方案。基于PLM的方法使用传统的监督学习,其中训练模型以“ X”为输入和输出预测为P(Y | X)。鉴于,基于及时的学习反映了设计输入以适合模型的想法,以便可以将原始目标重新构成(掩盖)语言建模的问题。我们可能会进一步刺激PLM提供的丰富知识,以通过采用额外提示来微调PLM,以更好地完成下游任务。我们的实验表明,所提出的方法的性能不仅仅是微调PLM。我们在Trancify数据集中获得了0.6946的F1分数,在比赛负责人板上获得了第七名。
translated by 谷歌翻译
本文探讨了一种机器学习方法,用于从单芯片MMWave雷达产生高分辨率点云。与激光雷达和基于视觉的系统不同,MMWave雷达可以在恶劣的环境中运行,并通过烟雾,雾气和灰尘等遮挡。不幸的是,与激光点云相比,当前的MMWAVE处理技术可提供差的空间分辨率。本文介绍了Radarhd,这是一种端到端的神经网络,该网络从低分辨率雷达输入中构造了激光雷达点云。由于存在镜面和虚假的反射,增强雷达图像是具有挑战性的。由于信号的类似SINC的扩展模式,雷达数据也不能很好地映射到传统的图像处理技术。我们通过在大量的RAW I/Q雷达数据上训练Radarhd与各种室内环境中的LiDar Point云配对来克服这些挑战。我们的实验表明,即使在训练期间未观察到的场景和存在浓烟的情况下,也能够产生丰富的点云。此外,Radarhd的点云足够高,足以与现有的LiDAR ODOMETIRE和映射工作流程配合使用。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
At the foundation of scientific evaluation is the labor-intensive process of peer review. This critical task requires participants to consume vast amounts of highly technical text. Prior work has annotated different aspects of review argumentation, but discourse relations between reviews and rebuttals have yet to be examined. We present DISAPERE, a labeled dataset of 20k sentences contained in 506 review-rebuttal pairs in English, annotated by experts. DISAPERE synthesizes label sets from prior work and extends them to include fine-grained annotation of the rebuttal sentences, characterizing their context in the review and the authors' stance towards review arguments. Further, we annotate every review and rebuttal sentence. We show that discourse cues from rebuttals can shed light on the quality and interpretation of reviews. Further, an understanding of the argumentative strategies employed by the reviewers and authors provides useful signal for area chairs and other decision makers.
translated by 谷歌翻译