This paper presents a learning framework to estimate an agent capability and task requirement model for multi-agent task allocation. With a set of team configurations and the corresponding task performances as the training data, linear task constraints can be learned to be embedded in many existing optimization-based task allocation frameworks. Comprehensive computational evaluations are conducted to test the scalability and prediction accuracy of the learning framework with a limited number of team configurations and performance pairs. A ROS and Gazebo-based simulation environment is developed to validate the proposed requirements learning and task allocation framework in practical multi-agent exploration and manipulation tasks. Results show that the learning process for scenarios with 40 tasks and 6 types of agents uses around 12 seconds, ending up with prediction errors in the range of 0.5-2%.
translated by 谷歌翻译
机器人的感知目前处于在有效的潜在空间中运行的现代方法与数学建立的经典方法之间的跨道路,并提供了可解释的,可信赖的结果。在本文中,我们引入了卷积的贝叶斯内核推理(Convbki)层,该层在可分离的卷积层中明确执行贝叶斯推断,以同时提高效率,同时保持可靠性。我们将层应用于3D语义映射的任务,在该任务中,我们可以实时学习激光雷达传感器信息的语义几何概率分布。我们根据KITTI数据集的最新语义映射算法评估我们的网络,并通过类似的语义结果证明了延迟的提高。
translated by 谷歌翻译
这项工作通过创建具有准确而完整的动态场景的新颖户外数据集来解决语义场景完成(SSC)数据中的差距。我们的数据集是由每个时间步骤的随机采样视图形成的,该步骤可监督无需遮挡或痕迹的场景的普遍性。我们通过利用最新的3D深度学习体系结构来使用时间信息来创建最新的开源网络中的SSC基准,并构建基准实时密集的局部语义映射算法MotionsC。我们的网络表明,提出的数据集可以在存在动态对象的情况下量化和监督准确的场景完成,这可以导致改进的动态映射算法的开发。所有软件均可在https://github.com/umich-curly/3dmapping上找到。
translated by 谷歌翻译
机器零件交互分类是网络物理系统(CPS)所需的关键能力,智能制造的关键推动器(SM)。虽然对该主题的先前相关研究主要集中在时间序列分类上,但是更改点检测同样重要,因为它提供了有关机器行为变化的时间信息。在这项工作中,我们解决了与基于深卷积神经网络(CNN)的框架的机器零件交互的点检测和时间序列分类。该框架中的CNN利用了两阶段编码器 - 分类器结构,用于有效的特征表示以及CPS的方便部署自定义。虽然数据驱动,框架的设计和优化是主题专业知识(中小企业)。中小企业定义的有限状态机(FSM)被纳入框架,以禁止间歇性错误分类。在案例研究中,我们实现了在铣床上执行机器部件交互分类的框架,并且使用测试数据集和部署模拟来评估性能。在测试数据集中,该实现在类上的平均f1分数为0.946,并且在部署模拟上平均延迟0.24秒。
translated by 谷歌翻译
本文报告了一个动态语义映射框架,该框架将3D场景流量测量纳入封闭形式的贝叶斯推理模型中。环境中动态对象的存在可能会导致当前映射算法中的伪影和痕迹,从而导致后方地图不一致。我们利用深度学习利用最新的语义细分和3D流量估计,以提供MAP推断的测量。我们开发了一个贝叶斯模型,该模型以流量传播,并渗透3D连续(即可以在任意分辨率下查询)语义占用率图优于其静态对应物的语义占用图。使用公开数据集的广泛实验表明,所提出的框架对其前身和深度神经网络的输入测量有所改善。
translated by 谷歌翻译
本文为多代理系统开发了一个随机编程框架,在该系统中,任务分解,分配和调度问题同时被优化。该框架可以应用于具有分布式子任务的异质移动机器人团队。例子包括大流行机器人服务协调,探索和救援以及具有异质车辆的交付系统。由于其固有的灵活性和鲁棒性,多代理系统被应用于越来越多的现实问题,涉及异质任务和不确定信息。大多数以前的作品都采用一种将任务分解为角色的独特方法,以后可以将任务分配给代理。对于角色可以变化并且存在多个分解结构的复杂任务,此假设无效。同时,尚不清楚如何在多代理系统设置下系统地量化和优化任务要求和代理能力中的不确定性。提出了复杂任务的表示形式:代理功能表示为随机分布的向量,任务要求通过可推广的二进制函数验证。在目标函数中选择有风险的条件值(CVAR)作为制定强大计划的度量。描述了一种有效的算法来解决该模型,并在两个不同的实践案例中评估了整个框架:在大流行期间的捕获量和机器人服务协调(例如,Covid-19)。结果表明,该框架是可扩展的,可扩展到示例案例的140个代理和40个任务,并提供了低成本计划,以确保成功的概率很高。
translated by 谷歌翻译
As Artificial and Robotic Systems are increasingly deployed and relied upon for real-world applications, it is important that they exhibit the ability to continually learn and adapt in dynamically-changing environments, becoming Lifelong Learning Machines. Continual/lifelong learning (LL) involves minimizing catastrophic forgetting of old tasks while maximizing a model's capability to learn new tasks. This paper addresses the challenging lifelong reinforcement learning (L2RL) setting. Pushing the state-of-the-art forward in L2RL and making L2RL useful for practical applications requires more than developing individual L2RL algorithms; it requires making progress at the systems-level, especially research into the non-trivial problem of how to integrate multiple L2RL algorithms into a common framework. In this paper, we introduce the Lifelong Reinforcement Learning Components Framework (L2RLCF), which standardizes L2RL systems and assimilates different continual learning components (each addressing different aspects of the lifelong learning problem) into a unified system. As an instantiation of L2RLCF, we develop a standard API allowing easy integration of novel lifelong learning components. We describe a case study that demonstrates how multiple independently-developed LL components can be integrated into a single realized system. We also introduce an evaluation environment in order to measure the effect of combining various system components. Our evaluation environment employs different LL scenarios (sequences of tasks) consisting of Starcraft-2 minigames and allows for the fair, comprehensive, and quantitative comparison of different combinations of components within a challenging common evaluation environment.
translated by 谷歌翻译
联邦学习(FL)试图在本地客户端分发模型培训,而无需在集中式数据中心收集数据,从而消除了数据私人关系问题。 FL的一个主要挑战是数据异质性(每个客户的数据分布可能会有所不同),因为它可能导致本地客户的权重差异并减慢全球融合。当前专为数据异质性设计的SOTA FL方法通常会施加正则化以限制非IID数据的影响,并且是状态算法,即它们随着时间的推移维持局部统计数据。尽管有效,但这些方法只能用于FL的特殊情况,仅涉及少数可靠的客户。对于fl的更典型应用,客户端数量很大(例如,边缘设备和移动应用程序),这些方法无法应用,激发了对任何可用于任何数量客户端使用的无状态方法的无状态方法的需求。我们得出了一阶梯度正则化,以惩罚由于本地数据异质性而导致的本地更新不一致。具体而言,为了减轻权重差异,我们将全局数据分布的一阶近似引入本地目标,该目标凭直觉地惩罚了与全局更新相反方向的更新。最终结果是一种无状态的FL算法,可实现1)在非IID数据分布下,比SOTA方法明显更快地收敛(即较少的通信回合)和2)总体融合性能更高。重要的是,我们的方法不会对客户大小施加不切实际的限制,从而可以从大多数FL应用程序中向大量客户学习。
translated by 谷歌翻译
显微镜图像的质量通常患有光差。这些畸变及其相关点的扩散功能必须进行定量估计以恢复畸变的图像。基于卷积神经网络的最新最先进的方法可以准确量化畸变,但仅限于点光源的图像,例如荧光珠。在这项研究中,我们描述了Phasenet的扩展,使其能够在生物样品的3D图像上使用。为此,我们的方法将特定于对象的信息结合到用于培训网络的模拟图像中。此外,我们通过Richardson-Lucy Deonvolution添加了基于Python的图像恢复。我们证明,具有预测的PSF的反卷积不仅可以消除模拟畸变,还可以提高使用未知残留PSF的真实原始显微镜图像的质量。我们提供代码,以快速,方便的预测和纠正畸变。
translated by 谷歌翻译
最近,视力变压器已被证明在多个视力任务中广泛使用基于卷积的方法(CNN)具有竞争力。与CNN相比,变压器的限制性偏差较小。但是,在图像分类设置中,这种灵活性在样本效率方面取决于变压器需要成像尺度训练。这个概念已转移到视频中,其中尚未在低标记或半监视设置中探索用于视频分类的变压器。我们的工作从经验上探讨了视频分类的低数据制度,发现与CNN相比,变形金刚在低标记的视频设置中表现出色。我们专门评估了两个对比的视频数据集(Kinetics-400和Somethingsomething-v2)的视频视觉变压器,并进行彻底的分析和消融研究,以使用视频变压器体系结构的主要特征来解释这一观察结果。我们甚至表明,仅使用标记的数据,变形金刚显着优于复杂的半监督CNN方法,这些方法也利用了大规模未标记的数据。我们的实验告知我们的建议,即半监督的学习视频工作应该考虑将来使用视频变压器。
translated by 谷歌翻译