涉及将知识从富含标签的源域传送到未标记的目标域的无监督域适应,可用于大大降低对象检测领域的注释成本。在这项研究中,我们证明了源域的对抗训练可以作为无监督域适应的新方法。具体地,我们建立了普遍训练的探测器在源极域中显着移位的目标域中实现了改进的检测性能。这种现象归因于普遍训练的探测器可用于提取与人类感知的鲁棒特征提取鲁棒特征,并在丢弃特定于域的非鲁棒特征的同时在域中传输域。此外,我们提出了一种结合对抗性训练和特征对准的方法,以确保具有目标域的鲁棒特征的改进对准。我们对四个基准数据集进行实验,并确认我们在大型域转移到艺术图像的大域移位的有效性。与基线模型相比,普遍训练的探测器在结合特征对准时将平均平均精度提高至7.7%,进一步高达11.8%。虽然我们的方法降低了对小型域移位的性能,但基于Frechet距离的域移位的量化允许我们确定是否应该进行抗逆性培训。
translated by 谷歌翻译
Text-to-text generation models have increasingly become the go-to solution for a wide variety of sequence labeling tasks (e.g., entity extraction and dialog slot filling). While most research has focused on the labeling accuracy, a key aspect -- of vital practical importance -- has slipped through the cracks: understanding model confidence. More specifically, we lack a principled understanding of how to reliably gauge the confidence of a model in its predictions for each labeled span. This paper aims to provide some empirical insights on estimating model confidence for generative sequence labeling. Most notably, we find that simply using the decoder's output probabilities is not the best in realizing well-calibrated confidence estimates. As verified over six public datasets of different tasks, we show that our proposed approach -- which leverages statistics from top-$k$ predictions by a beam search -- significantly reduces calibration errors of the predictions of a generative sequence labeling model.
translated by 谷歌翻译
Transparency of Machine Learning models used for decision support in various industries becomes essential for ensuring their ethical use. To that end, feature attribution methods such as SHAP (SHapley Additive exPlanations) are widely used to explain the predictions of black-box machine learning models to customers and developers. However, a parallel trend has been to train machine learning models in collaboration with other data holders without accessing their data. Such models, trained over horizontally or vertically partitioned data, present a challenge for explainable AI because the explaining party may have a biased view of background data or a partial view of the feature space. As a result, explanations obtained from different participants of distributed machine learning might not be consistent with one another, undermining trust in the product. This paper presents an Explainable Data Collaboration Framework based on a model-agnostic additive feature attribution algorithm (KernelSHAP) and Data Collaboration method of privacy-preserving distributed machine learning. In particular, we present three algorithms for different scenarios of explainability in Data Collaboration and verify their consistency with experiments on open-access datasets. Our results demonstrated a significant (by at least a factor of 1.75) decrease in feature attribution discrepancies among the users of distributed machine learning.
translated by 谷歌翻译
Analyzing defenses in team sports is generally challenging because of the limited event data. Researchers have previously proposed methods to evaluate football team defense by predicting the events of ball gain and being attacked using locations of all players and the ball. However, they did not consider the importance of the events, assumed the perfect observation of all 22 players, and did not fully investigated the influence of the diversity (e.g., nationality and sex). Here, we propose a generalized valuation method of defensive teams by score-scaling the predicted probabilities of the events. Using the open-source location data of all players in broadcast video frames in football games of men's Euro 2020 and women's Euro 2022, we investigated the effect of the number of players on the prediction and validated our approach by analyzing the games. Results show that for the predictions of being attacked, scoring, and conceding, all players' information was not necessary, while that of ball gain required information on three to four offensive and defensive players. With game analyses we explained the excellence in defense of finalist teams in Euro 2020. Our approach might be applicable to location data from broadcast video frames in football games.
translated by 谷歌翻译
顺序标记是一项基本的NLP任务,构成了许多应用程序的骨干。对SEQ2SEQ模型的监督学习(如T5)在这些问题上取得了巨大的成功。但是,这些模型的培训目标与我们在实际应用中关心的指标和Desiderata之间存在显着脱节。例如,实用的序列标记应用程序可能需要优化某些Precision-Recall折衷(TOP-K预测),这与最大化金标记序列的可能性的标准目标完全不同。因此,为了弥合这一差距,我们提出了Groot,这是一个简单而有效的框架,用于生成文本序列的奖励优化。 Groot通过训练生成的顺序标记模型来工作,以将解码器输出分布与(Black-Box)奖励函数的输出分布相匹配。使用迭代培训制度,我们首先生成预测候选者,然后纠正其中的错误,最后对比这些候选者(基于其奖励价值)。正如通过四个公共基准测试的广泛实验所证明的那样,Groot显着改善了所有奖励指标。此外,Groot还导致了整体解码器分布的改善,这是由顶级$ K $候选者的质量提高所证明的。
translated by 谷歌翻译
小型模块化反应堆的概念改变了解决未来能源危机的前景。考虑到其较低的投资要求,模块化,设计简单性和增强的安全功能,这种新的反应堆技术非常有希望。人工智能驱动的多尺度建模(中子,热液压,燃料性能等)在小型模块化反应堆的研究中纳入了数字双胞胎和相关的不确定性。在这项工作中,进行了一项关于耐亡燃料的多尺度建模的全面研究。探索了这些燃料在轻水的小型模块化反应堆中的应用。本章还重点介绍了机器学习和人工智能在设计优化,控制和监视小型模块反应器中的应用。最后,简要评估了有关人工智能在高燃烧复合事故耐受燃料的发展中的研究差距。还讨论了实现这些差距的必要行动。
translated by 谷歌翻译
数据增强是使用深度学习来提高对象识别的识别精度的重要技术。从多个数据集中产生混合数据(例如混音)的方法可以获取未包含在培训数据中的新多样性,从而有助于改善准确性。但是,由于在整个训练过程中选择了选择用于混合的数据,因此在某些情况下未选择适当的类或数据。在这项研究中,我们提出了一种数据增强方法,该方法根据班级概率来计算类之间的距离,并可以从合适的类中选择数据以在培训过程中混合。根据每个班级的训练趋势,对混合数据进行动态调整,以促进培​​训。所提出的方法与常规方法结合使用,以生成混合数据。评估实验表明,提出的方法改善了对一般和长尾图像识别数据集的识别性能。
translated by 谷歌翻译
多源数据融合,共同分析了多个数据源以获得改进的信息,引起了广泛的研究关注。对于多个医疗机构的数据集,数据机密性和跨机构沟通至关重要。在这种情况下,数据协作(DC)分析通过共享维数减少的中间表示,而无需迭代跨机构通信可能是合适的。在分析包括个人信息在内的数据时,共享数据的可识别性至关重要。在这项研究中,研究了DC分析的可识别性。结果表明,共享的中间表示很容易识别为原始数据以进行监督学习。然后,这项研究提出了一个非可读性可识别的直流分析,仅共享多个医疗数据集(包括个人信息)的非可读数据。所提出的方法基于随机样本排列,可解释的直流分析的概念以及无法重建的功能的使用来解决可识别性问题。在医学数据集的数值实验中,提出的方法表现出非可读性可识别性,同时保持了常规DC分析的高识别性能。对于医院的数据集,提出的方法在仅使用本地数据集的本地分析的识别性能方面表现出了9个百分点的改善。
translated by 谷歌翻译
自动故障检测是许多运动的主要挑战。在比赛中,裁判根据规则在视觉上判断缺点。因此,在判断时确保客观性和公平性很重要。为了解决这个问题,一些研究试图使用传感器和机器学习来自动检测故障。但是,与传感器的附件和设备(例如高速摄像头)相关的问题,这些问题与裁判的视觉判断以及故障检测模型的可解释性相抵触。在这项研究中,我们提出了一个用于非接触测量的断层检测系统。我们使用了根据多个合格裁判的判断进行训练的姿势估计和机器学习模型,以实现公平的错误判断。我们使用智能手机视频在包括东京奥运会的奖牌获得者中,使用了正常比赛的智能手机视频,并有意地走路。验证结果表明,所提出的系统的平均准确度超过90%。我们还透露,机器学习模型根据种族步行规则检测到故障。此外,奖牌获得者的故意故障步行运动与大学步行者不同。这一发现符合更通用的故障检测模型的实现。该代码和数据可在https://github.com/szucchini/racewalk-aijudge上获得。
translated by 谷歌翻译
城市河流提供了影响住宅生活的水环境。河流表面监测对于决定在哪里确定清洁工作以及何时自动开始清洁处理至关重要。我们专注于有机泥浆或“浮渣”,该泥浆积聚在河流的表面上,并给予其特殊的气味和对景观的外部经济影响。由于其具有稀疏分布和不稳定的有机形状模式的特征,因此很难自动进行监测。我们建议使用混合图像增强物进行斑块分类管道,以检测河流表面上的浮渣特征,以增加漂浮在河流上的浮渣与附近建筑物,例如建筑物,桥梁,杆子和障碍物(如建筑物,桥梁和障碍物)所反映的河流背景的多样性。此外,我们建议在河流上覆盖的浮渣索引,以帮助在线监视较差的等级,收集浮渣并决定化学处理政策。最后,我们展示了如何在每十分钟的时间序列数据集中使用框架的时间序列数据集录制河流浮渣事件。我们讨论管道的价值及其实验发现。
translated by 谷歌翻译