对抗性训练(AT)是针对对抗分类系统的对抗性攻击的简单而有效的防御,这是基于增强训练设置的攻击,从而最大程度地提高了损失。但是,AT作为视频分类的辩护的有效性尚未得到彻底研究。我们的第一个贡献是表明,为视频生成最佳攻击需要仔细调整攻击参数,尤其是步骤大小。值得注意的是,我们证明最佳步长随攻击预算线性变化。我们的第二个贡献是表明,在训练时间使用较小(次优的)攻击预算会导致测试时的性能更加强大。根据这些发现,我们提出了三个防御攻击预算的攻击的防御。自适应AT的第一个技术是一种技术,该技术是从随着训练迭代进行的。第二个课程是一项技术,随着训练的迭代进行,攻击预算的增加。第三个生成的AT,与deno的生成对抗网络一起,以提高稳健的性能。 UCF101数据集上的实验表明,所提出的方法改善了针对多种攻击类型的对抗性鲁棒性。
translated by 谷歌翻译
深度网络和决策林(如随机森林和渐变升级树)分别是用于结构化和表格数据的主要机器学习方法。许多论文在一个或两个不同的域(例如,在100个不同的表格数据设置上)经验上比较了大量分类器(例如,在100个不同的表格数据设置)上。然而,使用最具当代最佳实践的仔细概念和经验比较这两种策略尚未进行。概念上,我们说明两者都可以盈利地被视为“分区和投票”方案。具体地,他们俩学习的表示空间是将特征空间分区到凸多台的联合中。对于推理,每个都决定从激活节点的投票。该配方允许统一对这些方法之间关系的基本理解。凭经验,我们对数百个表格数据设置以及多个视觉和听觉设置进行比较这两种策略。我们的重点是在大多数10,000个样本的数据集上,它代表了大部分科学和生物医学数据集。一般而言,我们发现森林在表格和结构化数据(视觉和试镜)上以小样本尺寸的表现,而深网络在具有较大样本尺寸的结构化数据上更好地进行。这表明可以通过进一步结合森林和网络的进一步结合来实现两种情况的进一步提升。我们将继续在未来几个月内修改此技术报告,并更新结果。
translated by 谷歌翻译
在大多数领域,从人工智能和游戏到人类计算机互动(HCI)和心理学,面部表情识别是一个重要的研究主题。本文提出了一个用于面部表达识别的混合模型,该模型包括深度卷积神经网络(DCNN)和HAAR级联深度学习体系结构。目的是将实时和数字面部图像分类为所考虑的七个面部情感类别之一。这项研究中使用的DCNN具有更多的卷积层,恢复激活功能以及多个内核,以增强滤波深度和面部特征提取。此外,HAAR级联模型还相互用于检测实时图像和视频帧中的面部特征。来自Kaggle存储库(FER-2013)的灰度图像,然后利用图形处理单元(GPU)计算以加快培训和验证过程。预处理和数据增强技术用于提高培训效率和分类性能。实验结果表明,与最先进的实验和研究相比,分类性能有了显着改善的分类性能。同样,与其他常规模型相比,本文验证了所提出的体系结构在分类性能方面表现出色,提高了6%,总计高达70%的精度,并且执行时间较小,为2098.8S。
translated by 谷歌翻译
Variational inference uses optimization, rather than integration, to approximate the marginal likelihood, and thereby the posterior, in a Bayesian model. Thanks to advances in computational scalability made in the last decade, variational inference is now the preferred choice for many high-dimensional models and large datasets. This tutorial introduces variational inference from the parametric perspective that dominates these recent developments, in contrast to the mean-field perspective commonly found in other introductory texts.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) for semantic segmentation is a promising task freeing people from heavy annotation work. However, domain discrepancies in low-level image statistics and high-level contexts compromise the segmentation performance over the target domain. A key idea to tackle this problem is to perform both image-level and feature-level adaptation jointly. Unfortunately, there is a lack of such unified approaches for UDA tasks in the existing literature. This paper proposes a novel UDA pipeline for semantic segmentation that unifies image-level and feature-level adaptation. Concretely, for image-level domain shifts, we propose a global photometric alignment module and a global texture alignment module that align images in the source and target domains in terms of image-level properties. For feature-level domain shifts, we perform global manifold alignment by projecting pixel features from both domains onto the feature manifold of the source domain; and we further regularize category centers in the source domain through a category-oriented triplet loss and perform target domain consistency regularization over augmented target domain images. Experimental results demonstrate that our pipeline significantly outperforms previous methods. In the commonly tested GTA5$\rightarrow$Cityscapes task, our proposed method using Deeplab V3+ as the backbone surpasses previous SOTA by 8%, achieving 58.2% in mIoU.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
The performance of inertial navigation systems is largely dependent on the stable flow of external measurements and information to guarantee continuous filter updates and bind the inertial solution drift. Platforms in different operational environments may be prevented at some point from receiving external measurements, thus exposing their navigation solution to drift. Over the years, a wide variety of works have been proposed to overcome this shortcoming, by exploiting knowledge of the system current conditions and turning it into an applicable source of information to update the navigation filter. This paper aims to provide an extensive survey of information aided navigation, broadly classified into direct, indirect, and model aiding. Each approach is described by the notable works that implemented its concept, use cases, relevant state updates, and their corresponding measurement models. By matching the appropriate constraint to a given scenario, one will be able to improve the navigation solution accuracy, compensate for the lost information, and uncover certain internal states, that would otherwise remain unobservable.
translated by 谷歌翻译
Designing experiments often requires balancing between learning about the true treatment effects and earning from allocating more samples to the superior treatment. While optimal algorithms for the Multi-Armed Bandit Problem (MABP) provide allocation policies that optimally balance learning and earning, they tend to be computationally expensive. The Gittins Index (GI) is a solution to the MABP that can simultaneously attain optimality and computationally efficiency goals, and it has been recently used in experiments with Bernoulli and Gaussian rewards. For the first time, we present a modification of the GI rule that can be used in experiments with exponentially-distributed rewards. We report its performance in simulated 2- armed and 3-armed experiments. Compared to traditional non-adaptive designs, our novel GI modified design shows operating characteristics comparable in learning (e.g. statistical power) but substantially better in earning (e.g. direct benefits). This illustrates the potential that designs using a GI approach to allocate participants have to improve participant benefits, increase efficiencies, and reduce experimental costs in adaptive multi-armed experiments with exponential rewards.
translated by 谷歌翻译