Following the success of deep convolutional networks, state-of-the-art methods for 3d human pose estimation have focused on deep end-to-end systems that predict 3d joint locations given raw image pixels. Despite their excellent performance, it is often not easy to understand whether their remaining error stems from a limited 2d pose (visual) understanding, or from a failure to map 2d poses into 3dimensional positions.With the goal of understanding these sources of error, we set out to build a system that given 2d joint locations predicts 3d positions. Much to our surprise, we have found that, with current technology, "lifting" ground truth 2d joint locations to 3d space is a task that can be solved with a remarkably low error rate: a relatively simple deep feedforward network outperforms the best reported result by about 30% on Human3.6M, the largest publicly available 3d pose estimation benchmark. Furthermore, training our system on the output of an off-the-shelf state-of-the-art 2d detector (i.e., using images as input) yields state of the art results -this includes an array of systems that have been trained end-to-end specifically for this task. Our results indicate that a large portion of the error of modern deep 3d pose estimation systems stems from their visual analysis, and suggests directions to further advance the state of the art in 3d human pose estimation.
translated by 谷歌翻译
Human motion modelling is a classical problem at the intersection of graphics and computer vision, with applications spanning human-computer interaction, motion synthesis, and motion prediction for virtual and augmented reality. Following the success of deep learning methods in several computer vision tasks, recent work has focused on using deep recurrent neural networks (RNNs) to model human motion, with the goal of learning time-dependent representations that perform tasks such as short-term motion prediction and long-term human motion synthesis. We examine recent work, with a focus on the evaluation methodologies commonly used in the literature, and show that, surprisingly, state-of-the-art performance can be achieved by a simple baseline that does not attempt to model motion at all. We investigate this result, and analyze recent RNN methods by looking at the architectures, loss functions, and training procedures used in state-of-the-art approaches. We propose three changes to the standard RNN models typically used for human motion, which result in a simple and scalable RNN architecture that obtains state-of-the-art performance on human motion prediction.
translated by 谷歌翻译
The correct functioning of photovoltaic (PV) cells is critical to ensuring the optimal performance of a solar plant. Anomaly detection techniques for PV cells can result in significant cost savings in operation and maintenance (O&M). Recent research has focused on deep learning techniques for automatically detecting anomalies in Electroluminescence (EL) images. Automated anomaly annotations can improve current O&M methodologies and help develop decision-making systems to extend the life-cycle of the PV cells and predict failures. This paper addresses the lack of anomaly segmentation annotations in the literature by proposing a combination of state-of-the-art data-driven techniques to create a Golden Standard benchmark. The proposed method stands out for (1) its adaptability to new PV cell types, (2) cost-efficient fine-tuning, and (3) leverage public datasets to generate advanced annotations. The methodology has been validated in the annotation of a widely used dataset, obtaining a reduction of the annotation cost by 60%.
translated by 谷歌翻译
While skin cancer classification has been a popular and valuable deep learning application for years, there has been little consideration of the context in which testing images are taken. Traditional melanoma classifiers rely on the assumption that their testing environments are analogous to the structured images on which they are trained. This paper combats this notion, arguing that mole size, a vital attribute in professional dermatology, is a red herring in automated melanoma detection. Although malignant melanomas are consistently larger than benign melanomas, this distinction proves unreliable and harmful when images cannot be contextually scaled. This implementation builds a custom model that eliminates size as a training feature to prevent overfitting to incorrect parameters. Additionally, random rotation and contrast augmentations are performed to simulate the real-world use of melanoma detection applications. Several custom models with varying forms of data augmentation are implemented to demonstrate the most significant features of the generalization abilities of mole classifiers. These implementations show that user unpredictability is crucial when utilizing such applications. The caution required when manually modifying data is acknowledged, as data loss and biased conclusions are necessary considerations in this process. Additionally, mole size inconsistency and its significance are discussed in both the dermatology and deep learning communities.
translated by 谷歌翻译
Domain shift is a well-known problem in the medical imaging community. In particular, for endoscopic image analysis where the data can have different modalities the performance of deep learning (DL) methods gets adversely affected. In other words, methods developed on one modality cannot be used for a different modality. However, in real clinical settings, endoscopists switch between modalities for better mucosal visualisation. In this paper, we explore the domain generalisation technique to enable DL methods to be used in such scenarios. To this extend, we propose to use super pixels generated with Simple Linear Iterative Clustering (SLIC) which we refer to as "SUPRA" for SUPeRpixel Augmented method. SUPRA first generates a preliminary segmentation mask making use of our new loss "SLICLoss" that encourages both an accurate and color-consistent segmentation. We demonstrate that SLICLoss when combined with Binary Cross Entropy loss (BCE) can improve the model's generalisability with data that presents significant domain shift. We validate this novel compound loss on a vanilla U-Net using the EndoUDA dataset, which contains images for Barret's Esophagus and polyps from two modalities. We show that our method yields an improvement of nearly 25% in the target domain set compared to the baseline.
translated by 谷歌翻译
To apply federated learning to drug discovery we developed a novel platform in the context of European Innovative Medicines Initiative (IMI) project MELLODDY (grant n{\deg}831472), which was comprised of 10 pharmaceutical companies, academic research labs, large industrial companies and startups. The MELLODDY platform was the first industry-scale platform to enable the creation of a global federated model for drug discovery without sharing the confidential data sets of the individual partners. The federated model was trained on the platform by aggregating the gradients of all contributing partners in a cryptographic, secure way following each training iteration. The platform was deployed on an Amazon Web Services (AWS) multi-account architecture running Kubernetes clusters in private subnets. Organisationally, the roles of the different partners were codified as different rights and permissions on the platform and administrated in a decentralized way. The MELLODDY platform generated new scientific discoveries which are described in a companion paper.
translated by 谷歌翻译
这项工作是在培训生成动作/视频识别模型上,其输出是描述视频的自由形式的特定动作标题(而不是动作类标签)。生成的方法具有实用的优势,例如生产更细粒度和人类可读的产出,并且自然而然地是开放的。为此,我们提议适应视频/动作识别的预先训练的生成视觉和语言(V&L)基础模型。据我们所知,最近有几次尝试适应了用对比度学习(例如剪辑)训练的V&L模型(例如剪辑),但据我们所知,我们提出了第一种设定实现这一目标的方法来实现生成模型的方法。我们首先表明,生成模型的直接微调生产具有严重过度拟合的动作类别。为了减轻这一点,我们介绍了REST,这是一个由两个关键组成部分组成的培训框架:一种无监督的方法,用于通过伪捕获生成和自我训练,将生成模型适应动作/视频,即不使用任何动作特定的标签; (b)基于剪辑的检索方法,用于为每个视频发现一套伪装的伪扣,以训练该模型。重要的是,我们表明这两个组件对于获得高精度都是必要的。我们评估零拍动识别的问题的休息,我们表明,与基于对比的学习方法相比,我们的方法非常有竞争力。代码将可用。
translated by 谷歌翻译
来自光场的大量空间和角度信息允许开发多种差异估计方法。但是,对光场的获取需要高存储和处理成本,从而限制了该技术在实际应用中的使用。为了克服这些缺点,压缩感应(CS)理论使光学体系结构的开发能够获得单个编码的光场测量。该测量是使用需要高计算成本的优化算法或深神经网络来解码的。从压缩光场进行的传统差异估计方法需要首先恢复整个光场,然后再恢复后处理步骤,从而需要长时间。相比之下,这项工作提出了通过省略传统方法所需的恢复步骤来从单个压缩测量中进行快速差异估计。具体而言,我们建议共同优化用于获取单个编码光场快照和卷积神经网络(CNN)的光学体系结构,以估计差异图。在实验上,提出的方法估计了与使用深度学习方法重建的光场相当的差异图。此外,所提出的方法在训练和推理方面的速度比估计重建光场差异的最佳方法要快20倍。
translated by 谷歌翻译
随着超维数据的大数据分析的最新激增,对机器学习应用程序的降低技术的兴趣重新引起了人们的兴趣。为了使这些方法提高绩效提高并了解基础数据,需要确定适当的指标。此步骤通常被忽略,通常会选择指标,而无需考虑数据的基本几何形状。在本文中,我们提出了一种将弹性指标纳入T分布的随机邻居嵌入(T-SNE)和均匀的歧管近似和投影(UMAP)的方法。我们将方法应用于功能数据,该功能数据以旋转,参数化和比例为特征。如果这些属性被忽略,它们可能会导致不正确的分析和分类性能差。通过我们的方法,我们证明了三个基准数据集(MPEG-7,CAR数据集和Themoor的平面数据集)的形状识别任务的提高,我们分别获得了0.77、0.95和1.00 F1分数。
translated by 谷歌翻译
情感分析是自然语言处理(NLP)的分支,哪个目标是将情感或情感分配给特定的句子或单词。执行此任务对于希望通过聊天机器人或逐字了解客户反馈的公司特别有用。从简单模型到深层变压器神经网络的文献中,在文献中进行了广泛的研究。在本文中,我们将使用语言模型在嘈杂的中级计算(NISQ)时代(NISQ)时代解决情绪分析。我们将首先介绍量子计算的基础知识和DiscoCat模型。这将使我们能够定义一个通用框架以在量子计算机上执行NLP任务。然后,我们将扩展Lorenz等人进行的两类分类。(2021)到更大的数据集上的四类情绪分析实验,显示了这种框架的可扩展性。
translated by 谷歌翻译