Machine learning methods have revolutionized the discovery process of new molecules and materials. However, the intensive training process of neural networks for molecules with ever-increasing complexity has resulted in exponential growth in computation cost, leading to long simulation time and high energy consumption. Photonic chip technology offers an alternative platform for implementing neural networks with faster data processing and lower energy usage compared to digital computers. Photonics technology is naturally capable of implementing complex-valued neural networks at no additional hardware cost. Here, we demonstrate the capability of photonic neural networks for predicting the quantum mechanical properties of molecules. To the best of our knowledge, this work is the first to harness photonic technology for machine learning applications in computational chemistry and molecular sciences, such as drug discovery and materials design. We further show that multiple properties can be learned simultaneously in a photonic chip via a multi-task regression learning algorithm, which is also the first of its kind as well, as most previous works focus on implementing a network in the classification task.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Multivariate time series forecasting (MTSF) is a fundamental problem in numerous real-world applications. Recently, Transformer has become the de facto solution for MTSF, especially for the long-term cases. However, except for the one forward operation, the basic configurations in existing MTSF Transformer architectures were barely carefully verified. In this study, we point out that the current tokenization strategy in MTSF Transformer architectures ignores the token uniformity inductive bias of Transformers. Therefore, the vanilla MTSF transformer struggles to capture details in time series and presents inferior performance. Based on this observation, we make a series of evolution on the basic architecture of the vanilla MTSF transformer. We vary the flawed tokenization strategy, along with the decoder structure and embeddings. Surprisingly, the evolved simple transformer architecture is highly effective, which successfully avoids the over-smoothing phenomena in the vanilla MTSF transformer, achieves a more detailed and accurate prediction, and even substantially outperforms the state-of-the-art Transformers that are well-designed for MTSF.
translated by 谷歌翻译
A fundamental procedure in the analysis of massive datasets is the construction of similarity graphs. Such graphs play a key role for many downstream tasks, including clustering, classification, graph learning, and nearest neighbor search. For these tasks, it is critical to build graphs which are sparse yet still representative of the underlying data. The benefits of sparsity are twofold: firstly, constructing dense graphs is infeasible in practice for large datasets, and secondly, the runtime of downstream tasks is directly influenced by the sparsity of the similarity graph. In this work, we present $\textit{Stars}$: a highly scalable method for building extremely sparse graphs via two-hop spanners, which are graphs where similar points are connected by a path of length at most two. Stars can construct two-hop spanners with significantly fewer similarity comparisons, which are a major bottleneck for learning based models where comparisons are expensive to evaluate. Theoretically, we demonstrate that Stars builds a graph in nearly-linear time, where approximate nearest neighbors are contained within two-hop neighborhoods. In practice, we have deployed Stars for multiple data sets allowing for graph building at the $\textit{Tera-Scale}$, i.e., for graphs with tens of trillions of edges. We evaluate the performance of Stars for clustering and graph learning, and demonstrate 10~1000-fold improvements in pairwise similarity comparisons compared to different baselines, and 2~10-fold improvement in running time without quality loss.
translated by 谷歌翻译
Practices in the built environment have become more digitalized with the rapid development of modern design and construction technologies. However, the requirement of practitioners or scholars to gather complicated professional knowledge in the built environment has not been satisfied yet. In this paper, more than 80,000 paper abstracts in the built environment field were obtained to build a knowledge graph, a knowledge base storing entities and their connective relations in a graph-structured data model. To ensure the retrieval accuracy of the entities and relations in the knowledge graph, two well-annotated datasets have been created, containing 2,000 instances and 1,450 instances each in 29 relations for the named entity recognition task and relation extraction task respectively. These two tasks were solved by two BERT-based models trained on the proposed dataset. Both models attained an accuracy above 85% on these two tasks. More than 200,000 high-quality relations and entities were obtained using these models to extract all abstract data. Finally, this knowledge graph is presented as a self-developed visualization system to reveal relations between various entities in the domain. Both the source code and the annotated dataset can be found here: https://github.com/HKUST-KnowComp/BEKG.
translated by 谷歌翻译
We study sample efficient reinforcement learning (RL) under the general framework of interactive decision making, which includes Markov decision process (MDP), partially observable Markov decision process (POMDP), and predictive state representation (PSR) as special cases. Toward finding the minimum assumption that empowers sample efficient learning, we propose a novel complexity measure, generalized eluder coefficient (GEC), which characterizes the fundamental tradeoff between exploration and exploitation in online interactive decision making. In specific, GEC captures the hardness of exploration by comparing the error of predicting the performance of the updated policy with the in-sample training error evaluated on the historical data. We show that RL problems with low GEC form a remarkably rich class, which subsumes low Bellman eluder dimension problems, bilinear class, low witness rank problems, PO-bilinear class, and generalized regular PSR, where generalized regular PSR, a new tractable PSR class identified by us, includes nearly all known tractable POMDPs. Furthermore, in terms of algorithm design, we propose a generic posterior sampling algorithm, which can be implemented in both model-free and model-based fashion, under both fully observable and partially observable settings. The proposed algorithm modifies the standard posterior sampling algorithm in two aspects: (i) we use an optimistic prior distribution that biases towards hypotheses with higher values and (ii) a loglikelihood function is set to be the empirical loss evaluated on the historical data, where the choice of loss function supports both model-free and model-based learning. We prove that the proposed algorithm is sample efficient by establishing a sublinear regret upper bound in terms of GEC. In summary, we provide a new and unified understanding of both fully observable and partially observable RL.
translated by 谷歌翻译
玻璃在我们的日常生活中非常普遍。现有的计算机视觉系统忽略了它,因此可能会产生严重的后果,例如,机器人可能会坠入玻璃墙。但是,感知玻璃的存在并不简单。关键的挑战是,任意物体/场景可以出现在玻璃后面。在本文中,我们提出了一个重要的问题,即从单个RGB图像中检测玻璃表面。为了解决这个问题,我们构建了第一个大规模玻璃检测数据集(GDD),并提出了一个名为GDNet-B的新颖玻璃检测网络,该网络通过新颖的大型场探索大型视野中的丰富上下文提示上下文特征集成(LCFI)模块并将高级和低级边界特征与边界特征增强(BFE)模块集成在一起。广泛的实验表明,我们的GDNET-B可以在GDD测试集内外的图像上达到满足玻璃检测结果。我们通过将其应用于其他视觉任务(包括镜像分割和显着对象检测)来进一步验证我们提出的GDNET-B的有效性和概括能力。最后,我们显示了玻璃检测的潜在应用,并讨论了可能的未来研究方向。
translated by 谷歌翻译
本文介绍了Augraphy,这是一个旨在用于文档图像的现实数据增强策略的Python软件包。Augraphy使用许多不同的增强策略来产生增强版本的干净文档图像,这些图像似乎已经从标准的办公室操作中扭曲了,例如打印,扫描和传真通过旧机器或肮脏的机器,随着时间的推移降解,以及手写的标记。Augraphy既可以用作(1)为文档De-Noinging等任务生成多样化的培训数据的数据增强工具,以及(2)生成具有挑战性的测试数据,以评估文档图像建模任务上的模型鲁棒性。本文概述了Augraphy,并提供了三个示例稳健性测试AUGRAPHY的用例。
translated by 谷歌翻译
近年来,破坏预测取得了迅速的进展,尤其是在机器学习(ML)的方法中。理解为什么预测因子使某个预测与未来Tokamak破坏预测指标的预测准确性一样至关重要。大多数破坏预测因素的目的是准确性或跨机能力。但是,如果可以解释中断预测模型,则可以说明为什么某些样品被归类为中断前体。这使我们能够说出传入的破坏类型,并使我们深入了解破坏机制。本文根据J-TEXT上的物理引导特征提取(IDP-PGFE)设计了一种称为可解释的破坏预测变量的破坏预测变量。通过提取物理引导的特征有效地改善了模型的预测性能。需要高性能模型来确保解释结果的有效性。 IDP-PGFE的可解释性研究提供了对J-Text破坏的理解,并且通常与现有的破坏理解一致。 IDP-PGFE已被应用于破坏,因为在J文本上的密度极限实验的密度不断增加。 PGFE的时间演变具有贡献,表明ECRH的应用触发了辐射引起的破坏,从而降低了破坏时的密度。虽然RMP的应用确实提高了J文本中的密度极限。解释性研究指导了RMP不仅会影响MHD不稳定性,而且还会影响辐射轮廓的密度极限破坏的物理机制,从而延迟了密度极限的破坏。
translated by 谷歌翻译
深度学习方法论为高光谱图像(HSI)分析社区的发展做出了很大贡献。但是,这也使HSI分析系统容易受到对抗攻击的影响。为此,我们在本文中提出了一个掩盖的空间光谱自动编码器(MSSA),根据自我监督的学习理论,以增强HSI分析系统的鲁棒性。首先,进行了一个掩盖的序列注意学习模块,以促进沿光谱通道的HSI分析系统的固有鲁棒性。然后,我们开发了一个具有可学习的图形结构的图形卷积网络,以建立全局像素的组合。这样,每种组合中的所有相关像素都可以分散攻击效果,并且在空间方面可以实现更好的防御性能。最后,为了提高防御能力并解决有限标记样品的问题,MSSA采用光谱重建作为借口任务,并以自我监督的方式适合数据集。 - 高光谱分类方法和代表性的对抗防御策略。
translated by 谷歌翻译