我们使用释义作为独特的数据来源来分析上下文化的嵌入,特别关注BERT。由于释义自然编码一致的单词和短语语义,因此它们提供了一种独特的镜头来研究嵌入的特性。使用释义数据库的比对,我们在释义和短语表示中研究单词。我们发现,上下文嵌入有效地处理多义单词,但在许多情况下给出了同义词,具有令人惊讶的不同表示。我们证实了先前的发现,即Bert对单词顺序敏感,但是就BERT层的情境化水平而言,发现与先前工作的模式略有不同。
translated by 谷歌翻译
Latent variable models such as the Variational Auto-Encoder (VAE) have become a go-to tool for analyzing biological data, especially in the field of single-cell genomics. One remaining challenge is the interpretability of latent variables as biological processes that define a cell's identity. Outside of biological applications, this problem is commonly referred to as learning disentangled representations. Although several disentanglement-promoting variants of the VAE were introduced, and applied to single-cell genomics data, this task has been shown to be infeasible from independent and identically distributed measurements, without additional structure. Instead, recent methods propose to leverage non-stationary data, as well as the sparse mechanism shift assumption in order to learn disentangled representations with a causal semantic. Here, we extend the application of these methodological advances to the analysis of single-cell genomics data with genetic or chemical perturbations. More precisely, we propose a deep generative model of single-cell gene expression data for which each perturbation is treated as a stochastic intervention targeting an unknown, but sparse, subset of latent variables. We benchmark these methods on simulated single-cell data to evaluate their performance at latent units recovery, causal target identification and out-of-domain generalization. Finally, we apply those approaches to two real-world large-scale gene perturbation data sets and find that models that exploit the sparse mechanism shift hypothesis surpass contemporary methods on a transfer learning task. We implement our new model and benchmarks using the scvi-tools library, and release it as open-source software at \url{https://github.com/Genentech/sVAE}.
translated by 谷歌翻译
通过查找图像可能不满意的图像来捕获对象检测器的错误行为,这一兴趣很长。在实际应用(例如自动驾驶)中,对于表征除了简单的检测性能要求之外的潜在失败也至关重要。例如,与远处未遗漏的汽车检测相比,错过对靠近自我车辆的行人的侦查通常需要更仔细的检查。在测试时间预测这种潜在失败的问题在文献和基于检测不确定性的传统方法中被忽略了,因为它们对这种错误的细粒度表征不可知。在这项工作中,我们建议将查找“硬”图像作为基于查询的硬图像检索任务的问题进行重新制定,其中查询是“硬度”的特定定义,并提供了一种简单而直观的方法,可以解决此任务大型查询家庭。我们的方法完全是事后的,不需要地面真相注释,独立于检测器的选择,并且依赖于有效的蒙特卡洛估计,该估计使用简单的随机模型代替地面真相。我们通过实验表明,它可以成功地应用于各种查询中,它可以可靠地识别给定检测器的硬图像,而无需任何标记的数据。我们使用广泛使用的视网膜,更快的RCNN,Mask-RCNN和CASCADE MASK-RCNN对象检测器提供有关排名和分类任务的结果。
translated by 谷歌翻译
在评估临床机器学习模型的性能时,必须考虑部署人群。当观察到的标签患者的人群只是部署人群的一部分(选择标签)时,对观察到的人群的标准模型绩效估计可能会产生误导。在这项研究中,我们描述了三类的标签选择,并模拟了五个有因果关系的场景,以评估特定选择机制如何偏向一套常见的二进制机器学习模型性能指标。 Simulations reveal that when selection is affected by observed features, naive estimates of model discrimination may be misleading. When selection is affected by labels, naive estimates of calibration fail to reflect reality.我们从因果推理文献中借用传统的加权估计器,发现当正确指定选择概率时,它们会恢复全部人口估计。然后,我们解决了监视部署的机器学习模型的性能的现实任务,该模型的相互作用与临床医生相互作用并影响标签的选择机制。我们训练三个机器学习模型来标记低收益实验室的诊断,并模拟它们减少浪费实验室利用的预期结果。我们发现,对观察到的人群的幼稚估计值降低了20%。这样的差异可能足够大,可以导致成功终止成功的临床决策支持工具。我们提出了一个更改的部署程序,该程序将注入随机化的注入随机化与传统加权估计相结合,并发现其恢复了真正的模型性能。
translated by 谷歌翻译
深度学习的成功归功于我们能够相对轻松地解决某些大规模的非凸优化问题。尽管非凸优化是NP硬化,但简单的算法(通常是随机梯度下降的变体)在拟合大型神经网络的实践中具有令人惊讶的有效性。我们认为,在考虑了所有可能的隐藏单元对称对称性之后,神经网络损失景观包含(几乎)一个盆地。我们介绍了三种算法以缩小一个模型的单元,以使它们与参考模型的单位保持一致。这种转换产生了一组功能等效的权重,该权重位于参考模型附近的大约凸盆地中。在实验上,我们证明了各种模型架构和数据集中的单个盆地现象,包括在CIFAR-10和CIFAR-100上独立训练的Resnet模型之间的第一个(据我们所知)的(据我们所知)的第一次演示。此外,我们确定了有趣的现象,将模型宽度和训练时间与各种模型和数据集的模式连接性有关。最后,我们讨论了单个盆地理论的缺点,包括对线性模式连接假设的反例。
translated by 谷歌翻译
本文介绍了探索性的工作,介绍了以及在何种程度上对酷儿和跨性别者的偏见是用大型语言模型(LLM)(例如伯特)编码的。我们还提出了一种减少下游任务中这些偏见的方法:对由和/或关于酷儿人编写的数据进行填充。为了衡量抗Quase偏见,我们引入了一个新的基准数据集Winoqueer,以其他偏置检测基准测试,但要解决同性恐惧和跨性别偏见。我们发现伯特表现出明显的同性恋偏见,但是这种偏见可以通过finetuning bert对LGBTQ+社区成员撰写的自然语言语料库进行缓解。
translated by 谷歌翻译
因果推断的一个共同主题是学习观察到的变量(也称为因果发现)之间的因果关系。考虑到大量候选因果图和搜索空间的组合性质,这通常是一项艰巨的任务。也许出于这个原因,到目前为止,大多数研究都集中在相对较小的因果图上,并具有多达数百个节点。但是,诸如生物学之类的领域的最新进展使生成实验数据集,并进行了数千种干预措施,然后进行了数千个变量的丰富分析,从而增加了机会和迫切需要大量因果图模型。在这里,我们介绍了因子定向无环图(F-DAG)的概念,是将搜索空间限制为非线性低级别因果相互作用模型的一种方法。将这种新颖的结构假设与最近的进步相结合,弥合因果发现与连续优化之间的差距,我们在数千个变量上实现了因果发现。此外,作为统计噪声对此估计程序的影响的模型,我们根据随机图研究了F-DAG骨架的边缘扰动模型,并量化了此类扰动对F-DAG等级的影响。该理论分析表明,一组候选F-DAG比整个DAG空间小得多,因此在很难评估基础骨架的高维度中更统计学上的稳定性。我们提出了因子图(DCD-FG)的可区分因果发现,这是对高维介入数据的F-DAG约束因果发现的可扩展实现。 DCD-FG使用高斯非线性低级结构方程模型,并且在模拟中的最新方法以及最新的大型单细胞RNA测序数据集中,与最新方法相比显示出显着改善遗传干预措施。
translated by 谷歌翻译
域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译