为了实现长文档理解的构建和测试模型,我们引入质量,具有中文段的多项选择QA DataSet,具有约5,000个令牌的平均长度,比典型的当前模型更长。与经过段落的事先工作不同,我们的问题是由阅读整个段落的贡献者编写和验证的,而不是依赖摘要或摘录。此外,只有一半的问题是通过在紧缩时间限制下工作的注释器来应答,表明略读和简单的搜索不足以一直表现良好。目前的模型在此任务上表现不佳(55.4%),并且落后于人类性能(93.5%)。
translated by 谷歌翻译
In MT evaluation, pairwise comparisons are conducted to identify the better system. In conducting the comparison, the experimenter must allocate a budget to collect Direct Assessment (DA) judgments. We provide a cost effective way to spend the budget, but show that typical budget sizes often do not allow for solid comparison. Taking the perspective that the basis of solid comparison is in achieving statistical significance, we study the power (rate of achieving significance) on a large collection of pairwise DA comparisons. Due to the nature of statistical estimation, power is low for differentiating less than 1-2 DA points, and to achieve a notable increase in power requires at least 2-3x more samples. Applying variance reduction alone will not yield these gains, so we must face the reality of undetectable differences and spending increases. In this context, we propose interim testing, an "early stopping" collection procedure that yields more power per judgment collected, which adaptively focuses the budget on pairs that are borderline significant. Interim testing can achieve up to a 27% efficiency gain when spending 3x the current budget, or 18% savings at the current evaluation power.
translated by 谷歌翻译
我们解决了受控生成小分子的任务,该任务需要在某些约束(例如,与参考分子相似)下找到具有所需特性的新分子。在这里,我们介绍了Molmim,这是一种用于学习信息丰富且聚集的潜在空间的小分子药物发现的概率自动编码器。 Molmim通过共同信息机(MIM)学习训练,并提供可变长度微笑字符串的固定长度表示。由于编码器模型可以通过无效样品的``孔''来学习表示形式,因此我们在这里提出了训练程序的新型扩展,该过程促进了促进密集的潜在空间,并允许模型从潜在代码的随机扰动中采样有效分子。我们提供了Molmim与几个可变大小和固定尺寸的编码器模型的彻底比较,这表明了Molmim的上一代,如有效性,独特性和新颖性而言。然后,我们利用CMA-E,一种天真的黑盒和无梯度的搜索算法,是Molmim的潜在空间来实现属性引导分子优化的任务。我们实现了最新的单个属性优化任务以及多目标优化的具有挑战性的任务,从而提高了先前的成功率SOTA超过5 \%。我们将强有力的结果归因于莫尔米姆的潜在表示,这些表示在潜在空间中聚集了相似的分子,而CMA-ES通常用作基线优化方法。我们还证明了莫尔米姆在计算有限的制度中有利,使其成为这种情况的有吸引力的模型。
translated by 谷歌翻译
通过其高能量效率,加工存储器(PIM)阵列越来越多地用于卷积神经网络(CNN)推断。在基于PIM的CNN推断中,计算延迟和能量取决于CNN权重映射到PIM阵列的方式。最近的一项研究建议的移位和重复的内核(SDK)映射,其用一个并行窗口的单位重用输入特征映射,其与重复的内核卷积以并行获得多个输出元素。但是,现有的基于SDK的映射算法并不总是导致最小计算周期,因为它只将方形的并联窗口与整个通道映射。在本文中,我们介绍了一种名为可变窗口SDK(VW-SDK)的新型映射算法,其自适应地确定了对给定卷积层和PIM阵列的最小计算周期的并行窗口的形状。通过允许具有部分通道的矩形窗口,VW-SDK更有效地利用PIM阵列,从而进一步减少计算周期的数量。与512x512 PIM阵列和RESET-18的仿真显示,与现有的基于SDK的算法相比,VW-SDK将推理速度提高1.69倍。
translated by 谷歌翻译
机器人操纵可以配制成诱导一系列空间位移:其中移动的空间可以包括物体,物体的一部分或末端执行器。在这项工作中,我们提出了一个简单的模型架构,它重新排列了深度功能,以从视觉输入推断出可视输入的空间位移 - 这可以参数化机器人操作。它没有对象的假设(例如规范姿势,模型或关键点),它利用空间对称性,并且比我们学习基于视觉的操纵任务的基准替代方案更高的样本效率,并且依赖于堆叠的金字塔用看不见的物体组装套件;从操纵可变形的绳索,以将堆积的小物体推动,具有闭环反馈。我们的方法可以表示复杂的多模态策略分布,并推广到多步顺序任务,以及6dof拾取器。 10个模拟任务的实验表明,它比各种端到端基线更快地学习并概括,包括使用地面真实对象姿势的政策。我们在现实世界中使用硬件验证我们的方法。实验视频和代码可在https://transporternets.github.io获得
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) for semantic segmentation is a promising task freeing people from heavy annotation work. However, domain discrepancies in low-level image statistics and high-level contexts compromise the segmentation performance over the target domain. A key idea to tackle this problem is to perform both image-level and feature-level adaptation jointly. Unfortunately, there is a lack of such unified approaches for UDA tasks in the existing literature. This paper proposes a novel UDA pipeline for semantic segmentation that unifies image-level and feature-level adaptation. Concretely, for image-level domain shifts, we propose a global photometric alignment module and a global texture alignment module that align images in the source and target domains in terms of image-level properties. For feature-level domain shifts, we perform global manifold alignment by projecting pixel features from both domains onto the feature manifold of the source domain; and we further regularize category centers in the source domain through a category-oriented triplet loss and perform target domain consistency regularization over augmented target domain images. Experimental results demonstrate that our pipeline significantly outperforms previous methods. In the commonly tested GTA5$\rightarrow$Cityscapes task, our proposed method using Deeplab V3+ as the backbone surpasses previous SOTA by 8%, achieving 58.2% in mIoU.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
translated by 谷歌翻译
Transformer has achieved impressive successes for various computer vision tasks. However, most of existing studies require to pretrain the Transformer backbone on a large-scale labeled dataset (e.g., ImageNet) for achieving satisfactory performance, which is usually unavailable for medical images. Additionally, due to the gap between medical and natural images, the improvement generated by the ImageNet pretrained weights significantly degrades while transferring the weights to medical image processing tasks. In this paper, we propose Bootstrap Own Latent of Transformer (BOLT), a self-supervised learning approach specifically for medical image classification with the Transformer backbone. Our BOLT consists of two networks, namely online and target branches, for self-supervised representation learning. Concretely, the online network is trained to predict the target network representation of the same patch embedding tokens with a different perturbation. To maximally excavate the impact of Transformer from limited medical data, we propose an auxiliary difficulty ranking task. The Transformer is enforced to identify which branch (i.e., online/target) is processing the more difficult perturbed tokens. Overall, the Transformer endeavours itself to distill the transformation-invariant features from the perturbed tokens to simultaneously achieve difficulty measurement and maintain the consistency of self-supervised representations. The proposed BOLT is evaluated on three medical image processing tasks, i.e., skin lesion classification, knee fatigue fracture grading and diabetic retinopathy grading. The experimental results validate the superiority of our BOLT for medical image classification, compared to ImageNet pretrained weights and state-of-the-art self-supervised learning approaches.
translated by 谷歌翻译