在通用游戏中学习是不稳定的,并且经常导致社会上不受欢迎(占主导地位)的结果。为了减轻这种情况,通过对手的学习意识(LOLA)通过计算每个代理人对对手预期的学习步骤的影响,从而介绍了对手的对手。但是,原始的Lola配方(和后续工作)是不一致的,因为Lola将其他代理商模仿为天真的学习者而不是Lola代理商。在以前的工作中,这种不一致被认为是萝拉未能保留稳定固定点(SFP)的原因。首先,我们将一致性形式化,并表明高阶Lola(Hola)如果汇聚解决了Lola的不一致问题。其次,我们纠正了Sch \“ Afer and Anandkumar(2019)在文献中提出的主张,证明了竞争性梯度下降(CGD)并未作为系列扩展(并且未能解决一致性问题)恢复Hola。第三,我们提出了一种称为一致LOLA(COLA)的新方法,该方法学习在相互对手塑造下保持一致的更新功能。它不需要二阶导数,并且即使Hola无法收敛,也需要一致的更新功能。但是,我们也证明了这一点即使是一致的更新功能也不能保留SFP,这与假设相矛盾:这种缺点是由Lola的不一致引起的。最后,在一系列通用游戏的经验评估中,我们发现可乐找到了亲社的解决方案,并且在更广泛的情况下会融合。与Hola和Lola相比,学习率的范围。我们以简单游戏的理论结果支持后一个发现。
translated by 谷歌翻译
在常见和冲突的利益(混合动机环境)最近在多智能经纪人学习中获得了相当大的关注的情况下,在普通和冲突的环境中的合作。然而,通常研究的混合动机环境具有单一的合作结果,所有代理商可以同意。许多现实世界的多代理环境是讨价还价的问题(BPS):它们有几个帕累托最优的收益档案,代理具有冲突的偏好。我们认为当规范性分歧的空间导致存在多个竞争合作均衡的空间时,典型的合作诱导学习算法未能在BPS中合作,并经过凭经验说明这个问题。要纠正问题,我们介绍了规范适应性政策的概念。规范适应性政策能够根据不同情况下的不同规范表现,从而为解决规范性分歧的机会创造了机会。我们开发一类规范适应性政策,并在实验中展示,这些实验性显着增加了合作。然而,规范适应性无法解决从利用率和合作稳健性之间产生的基本权衡产生的残余议价失败。
translated by 谷歌翻译
Machine learning models are typically evaluated by computing similarity with reference annotations and trained by maximizing similarity with such. Especially in the bio-medical domain, annotations are subjective and suffer from low inter- and intra-rater reliability. Since annotations only reflect the annotation entity's interpretation of the real world, this can lead to sub-optimal predictions even though the model achieves high similarity scores. Here, the theoretical concept of Peak Ground Truth (PGT) is introduced. PGT marks the point beyond which an increase in similarity with the reference annotation stops translating to better Real World Model Performance (RWMP). Additionally, a quantitative technique to approximate PGT by computing inter- and intra-rater reliability is proposed. Finally, three categories of PGT-aware strategies to evaluate and improve model performance are reviewed.
translated by 谷歌翻译
Quaternion valued neural networks experienced rising popularity and interest from researchers in the last years, whereby the derivatives with respect to quaternions needed for optimization are calculated as the sum of the partial derivatives with respect to the real and imaginary parts. However, we can show that product- and chain-rule does not hold with this approach. We solve this by employing the GHRCalculus and derive quaternion backpropagation based on this. Furthermore, we experimentally prove the functionality of the derived quaternion backpropagation.
translated by 谷歌翻译
Neuromorphic systems require user-friendly software to support the design and optimization of experiments. In this work, we address this need by presenting our development of a machine learning-based modeling framework for the BrainScaleS-2 neuromorphic system. This work represents an improvement over previous efforts, which either focused on the matrix-multiplication mode of BrainScaleS-2 or lacked full automation. Our framework, called hxtorch.snn, enables the hardware-in-the-loop training of spiking neural networks within PyTorch, including support for auto differentiation in a fully-automated hardware experiment workflow. In addition, hxtorch.snn facilitates seamless transitions between emulating on hardware and simulating in software. We demonstrate the capabilities of hxtorch.snn on a classification task using the Yin-Yang dataset employing a gradient-based approach with surrogate gradients and densely sampled membrane observations from the BrainScaleS-2 hardware system.
translated by 谷歌翻译
Osteoarthritis (OA) is the most prevalent chronic joint disease worldwide, where knee OA takes more than 80% of commonly affected joints. Knee OA is not a curable disease yet, and it affects large columns of patients, making it costly to patients and healthcare systems. Etiology, diagnosis, and treatment of knee OA might be argued by variability in its clinical and physical manifestations. Although knee OA carries a list of well-known terminology aiming to standardize the nomenclature of the diagnosis, prognosis, treatment, and clinical outcomes of the chronic joint disease, in practice there is a wide range of terminology associated with knee OA across different data sources, including but not limited to biomedical literature, clinical notes, healthcare literacy, and health-related social media. Among these data sources, the scientific articles published in the biomedical literature usually make a principled pipeline to study disease. Rapid yet, accurate text mining on large-scale scientific literature may discover novel knowledge and terminology to better understand knee OA and to improve the quality of knee OA diagnosis, prevention, and treatment. The present works aim to utilize artificial neural network strategies to automatically extract vocabularies associated with knee OA diseases. Our finding indicates the feasibility of developing word embedding neural networks for autonomous keyword extraction and abstraction of knee OA.
translated by 谷歌翻译
Data-centric artificial intelligence (data-centric AI) represents an emerging paradigm emphasizing that the systematic design and engineering of data is essential for building effective and efficient AI-based systems. The objective of this article is to introduce practitioners and researchers from the field of Information Systems (IS) to data-centric AI. We define relevant terms, provide key characteristics to contrast the data-centric paradigm to the model-centric one, and introduce a framework for data-centric AI. We distinguish data-centric AI from related concepts and discuss its longer-term implications for the IS community.
translated by 谷歌翻译
Many real-world reinforcement learning tasks require control of complex dynamical systems that involve both costly data acquisition processes and large state spaces. In cases where the transition dynamics can be readily evaluated at specified states (e.g., via a simulator), agents can operate in what is often referred to as planning with a \emph{generative model}. We propose the AE-LSVI algorithm for best-policy identification, a novel variant of the kernelized least-squares value iteration (LSVI) algorithm that combines optimism with pessimism for active exploration (AE). AE-LSVI provably identifies a near-optimal policy \emph{uniformly} over an entire state space and achieves polynomial sample complexity guarantees that are independent of the number of states. When specialized to the recently introduced offline contextual Bayesian optimization setting, our algorithm achieves improved sample complexity bounds. Experimentally, we demonstrate that AE-LSVI outperforms other RL algorithms in a variety of environments when robustness to the initial state is required.
translated by 谷歌翻译
Multimodal deep learning has been used to predict clinical endpoints and diagnoses from clinical routine data. However, these models suffer from scaling issues: they have to learn pairwise interactions between each piece of information in each data type, thereby escalating model complexity beyond manageable scales. This has so far precluded a widespread use of multimodal deep learning. Here, we present a new technical approach of "learnable synergies", in which the model only selects relevant interactions between data modalities and keeps an "internal memory" of relevant data. Our approach is easily scalable and naturally adapts to multimodal data inputs from clinical routine. We demonstrate this approach on three large multimodal datasets from radiology and ophthalmology and show that it outperforms state-of-the-art models in clinically relevant diagnosis tasks. Our new approach is transferable and will allow the application of multimodal deep learning to a broad set of clinically relevant problems.
translated by 谷歌翻译
Using graph neural networks for large graphs is challenging since there is no clear way of constructing mini-batches. To solve this, previous methods have relied on sampling or graph clustering. While these approaches often lead to good training convergence, they introduce significant overhead due to expensive random data accesses and perform poorly during inference. In this work we instead focus on model behavior during inference. We theoretically model batch construction via maximizing the influence score of nodes on the outputs. This formulation leads to optimal approximation of the output when we do not have knowledge of the trained model. We call the resulting method influence-based mini-batching (IBMB). IBMB accelerates inference by up to 130x compared to previous methods that reach similar accuracy. Remarkably, with adaptive optimization and the right training schedule IBMB can also substantially accelerate training, thanks to precomputed batches and consecutive memory accesses. This results in up to 18x faster training per epoch and up to 17x faster convergence per runtime compared to previous methods.
translated by 谷歌翻译