本文提出了一种新的3D形状生成方法,从而在小波域中的连续隐式表示上实现了直接生成建模。具体而言,我们提出了一个带有一对粗糙和细节系数的紧凑型小波表示,通过截短的签名距离函数和多尺度的生物联盟波波隐式表示3D形状,并制定了一对神经网络:基于生成器基于扩散模型的生成器以粗糙系数的形式产生不同的形状;以及一个细节预测因子,以进一步生成兼容的细节系数量,以丰富具有精细结构和细节的生成形状。定量和定性实验结果都表现出我们的方法在产生具有复杂拓扑和结构,干净表面和细节的多样化和高质量形状方面的优势,超过了最先进的模型的3D生成能力。
translated by 谷歌翻译
因果推论已成为处理分布外(OOD)概括问题的强大工具,该问题旨在提取不变特征。但是,常规方法从多个数据拆分中应用因果学习者,这可能会从数据分布中产生偏见的表示学习,并且在异质源中不变特征学习中的难度。为了解决这些问题,本文介绍了平衡的元考生学习者(BMCL),其中包括平衡的任务生成模块(BTG)和元伴侣特征学习模块(MCFL)。具体而言,BTG模块学会通过一种自我学习的分区算法来生成平衡子集,该算法对示例类和上下文的比例有限制。 MCFL模块训练一个适合不同分布的元学习者。在NICO ++数据集上进行的实验验证了BMCL有效地标识了类不变的视觉区域进行分类,并可以作为改善最先进方法的性能的一般框架。
translated by 谷歌翻译
Bird's Eye View(BEV)表示是一种基于空间融合的自动驾驶的新知觉公式。此外,在BEV表示中还引入了时间融合并获得了巨大的成功。在这项工作中,我们提出了一种统一空间和时间融合的新方法,并将它们合并为统一的数学公式。统一的融合不仅可以为BEV融合提供新的观点,而且还可以带来新的功能。借助拟议的统一时空融合,我们的方法可以支持远程融合,这在常规的BEV方法中很难实现。此外,我们工作中的BEV融合是时间自适应的,时间融合的重量是可以学习的。相比之下,常规方法主要使用固定权重和相等的权重进行时间融合。此外,拟议的统一融合可以避免在常规的BEV融合方法中丢失的信息,并充分利用功能。对Nuscenes数据集进行的广泛实验和消融研究表明,该方法的有效性,我们的方法在MAP分割任务中获得了最新性能。
translated by 谷歌翻译
3D肺部片段的重建在肺癌的外科治疗计划中起着重要作用,这有助于保存肺功能并有助于确保低复发率。但是,在深度学习时代,肺部段的自动重建仍未得到探索。在本文中,我们研究了是什么使肺部段自动重建。首先,我们在临床和几何上表达了肺部段的解剖学定义,并提出了遵守这些定义的评估指标。其次,我们提出了脉冲(隐式肺部段),这是一种旨在肺部段重建的深层隐式表面模型。通过脉冲自动重建肺部段的指标和视觉吸引力是准确的。与规范分割方法相比,冲动输出连续预测任意分辨率具有较高的训练效率和更少的参数。最后,我们尝试不同的网络输入,以分析肺部段重建任务中重要的事情。我们的代码可在https://github.com/m3dv/impulse上找到。
translated by 谷歌翻译
本文介绍了一个名为DTNET的新颖框架,用于3D网格重建和通过Distangled Tostology生成。除了以前的工作之外,我们还学习一个特定于每个输入的拓扑感知的神经模板,然后将模板变形以重建详细的网格,同时保留学习的拓扑。一个关键的见解是将复杂的网格重建分解为两个子任务:拓扑配方和形状变形。多亏了脱钩,DT-NET隐含地学习了潜在空间中拓扑和形状的分离表示。因此,它可以启用新型的脱离控件,以支持各种形状生成应用,例如,将3D对象的拓扑混合到以前的重建作品无法实现的3D对象的拓扑结构。广泛的实验结果表明,与最先进的方法相比,我们的方法能够产生高质量的网格,尤其是具有不同拓扑结构。
translated by 谷歌翻译
强大的语义细分面临的一个普遍挑战是昂贵的数据注释成本。现有的半监督解决方案显示出解决此问题的巨大潜力。他们的关键想法是通过未经监督的数据增加未标记的数据来构建一致性正则化,以进行模型培训。未标记数据的扰动使一致性训练损失使半监督的语义分割受益。但是,这些扰动破坏了图像上下文并引入了不自然的边界,这对语义分割是有害的。此外,广泛采用的半监督学习框架,即均值老师,遭受了绩效限制,因为学生模型最终会收敛于教师模型。在本文中,首先,我们提出了一个友好的可区分几何扭曲,以进行无监督的数据增强。其次,提出了一个新颖的对抗双重学生框架,以从以下两个方面从以下两个方面改善均等老师:(1)双重学生模型是独立学习的,除了稳定约束以鼓励利用模型多样性; (2)对对抗性训练计划适用于学生,并诉诸歧视者以区分无标记数据的可靠伪标签进行自我训练。通过对Pascal VOC2012和CityScapes进行的广泛实验来验证有效性。我们的解决方案可显着提高两个数据集的性能和最先进的结果。值得注意的是,与完全监督相比,我们的解决方案仅使用Pascal VOC2012上的12.5%注释数据获得了73.4%的可比MIOU。我们的代码和模型可在https://github.com/caocong/ads-semiseg上找到。
translated by 谷歌翻译
在大数据的时代,通过单数值分解的图像近似近似。但是,奇异值分解(SVD)仅用于订单两个数据,即矩阵。有必要将高阶输入变成矩阵或将其分解为一系列订单两个切片,以解决具有SVD的多光谱图像和视频等高阶数据。高阶奇异值分解(HOSVD)扩展了SVD,可以使用一些排名一的组件的总和近似高阶数据。我们考虑将HOSVD推广到有限维度的代数上的问题。该代数(称为T-Algebra)概括了复数。代数的元素(称为t-scalars)是固定大小的复数阵列。可以将矩阵和张量概括在T量标准上,然后扩展许多规范矩阵和张量算法,包括HOSVD,以获得更高的性能版本。 HOSVD的概括称为THOSVD。交替的算法可以进一步提高其近似多路数据的性能。 THOSVD还统一了广泛的主要组件分析算法。为了利用T-scalars进行近似图像利用广义算法的潜力,我们使用像素邻域策略将每个像素转换为“更深入”的T-Scalar。公开图像的实验表明,T型量表的广义算法,即ThoSVD,与其规范对应物进行了优惠。
translated by 谷歌翻译
如今,由于屏幕共享,远程合作和在线教育的广泛应用,屏幕内容存在爆炸性增长。为了匹配有限终端带宽,可以缩小高分辨率(HR)屏幕内容并压缩。在接收器侧,低分辨率(LR)屏幕内容图像(SCI)的超分辨率(SR)由HR显示器或用户缩小以供详细观察。然而,由于图像特性非常不同的图像特性以及在任意尺度下浏览的SCI浏览要求,图像SR方法主要针对自然图像设计不概括SCI。为此,我们为SCISR提出了一种新颖的隐式变压器超分辨率网络(ITSRN)。对于任意比率的高质量连续SR,通过所提出的隐式变压器从密钥坐标处的图像特征推断出查询坐标处的像素值,并且提出了隐式位置编码方案来聚合与查询相似的相邻像素值。使用LR和HR SCI对构建基准SCI1K和SCI1K压缩数据集。广泛的实验表明,提出的ITSRN显着优于压缩和未压缩的SCI的几种竞争连续和离散SR方法。
translated by 谷歌翻译
最近的深面幻觉方法显示出令人惊叹的超级分辨面部图像,甚至超过人类能力。但是,这些算法主要在非公共合成数据集上评估。因此,尚不清楚这些算法如何在公共面幻觉数据集上执行。同时,大多数现有数据集都不太考虑种族的分布,这使得在这些数据集上训练的面部幻觉方法偏向于某些特定种族。为了解决上述两个问题,在本文中,我们构建了一个公共种族多样化的面部数据集,Edface-Celeb-1M,并设计了面部幻觉的基准任务。我们的数据集包括170万张覆盖不同国家 /地区的照片,并具有平衡的种族组成。据我们所知,它是野外最大且公开的面部幻觉数据集。与该数据集相关联,本文还贡献了各种评估协议,并提供了全面的分析,以基于现有的最新方法。基准评估证明了最新算法的性能和局限性。
translated by 谷歌翻译
本文回顾了关于压缩视频质量增强质量的第一个NTIRE挑战,重点是拟议的方法和结果。在此挑战中,采用了新的大型不同视频(LDV)数据集。挑战有三个曲目。Track 1和2的目标是增强HEVC在固定QP上压缩的视频,而Track 3旨在增强X265压缩的视频,以固定的位速率压缩。此外,轨道1和3的质量提高了提高保真度(PSNR)的目标,以及提高感知质量的2个目标。这三个曲目完全吸引了482个注册。在测试阶段,分别提交了12个团队,8支球队和11支球队,分别提交了轨道1、2和3的最终结果。拟议的方法和解决方案衡量视频质量增强的最先进。挑战的首页:https://github.com/renyang-home/ntire21_venh
translated by 谷歌翻译