The performance of a camera network monitoring a set of targets depends crucially on the configuration of the cameras. In this paper, we investigate the reconfiguration strategy for the parameterized camera network model, with which the sensing qualities of the multiple targets can be optimized globally and simultaneously. We first propose to use the number of pixels occupied by a unit-length object in image as a metric of the sensing quality of the object, which is determined by the parameters of the camera, such as intrinsic, extrinsic, and distortional coefficients. Then, we form a single quantity that measures the sensing quality of the targets by the camera network. This quantity further serves as the objective function of our optimization problem to obtain the optimal camera configuration. We verify the effectiveness of our approach through extensive simulations and experiments, and the results reveal its improved performance on the AprilTag detection tasks. Codes and related utilities for this work are open-sourced and available at https://github.com/sszxc/MultiCam-Simulation.
translated by 谷歌翻译
Designing safety-critical control for robotic manipulators is challenging, especially in a cluttered environment. First, the actual trajectory of a manipulator might deviate from the planned one due to the complex collision environments and non-trivial dynamics, leading to collision; Second, the feasible space for the manipulator is hard to obtain since the explicit distance functions between collision meshes are unknown. By analyzing the relationship between the safe set and the controlled invariant set, this paper proposes a data-driven control barrier function (CBF) construction method, which extracts CBF from distance samples. Specifically, the CBF guarantees the controlled invariant property for considering the system dynamics. The data-driven method samples the distance function and determines the safe set. Then, the CBF is synthesized based on the safe set by a scenario-based sum of square (SOS) program. Unlike most existing linearization based approaches, our method reserves the volume of the feasible space for planning without approximation, which helps find a solution in a cluttered environment. The control law is obtained by solving a CBF-based quadratic program in real time, which works as a safe filter for the desired planning-based controller. Moreover, our method guarantees safety with the proven probabilistic result. Our method is validated on a 7-DOF manipulator in both real and virtual cluttered environments. The experiments show that the manipulator is able to execute tasks where the clearance between obstacles is in millimeters.
translated by 谷歌翻译
Recently, the dominant DETR-based approaches apply central-concept spatial prior to accelerate Transformer detector convergency. These methods gradually refine the reference points to the center of target objects and imbue object queries with the updated central reference information for spatially conditional attention. However, centralizing reference points may severely deteriorate queries' saliency and confuse detectors due to the indiscriminative spatial prior. To bridge the gap between the reference points of salient queries and Transformer detectors, we propose SAlient Point-based DETR (SAP-DETR) by treating object detection as a transformation from salient points to instance objects. In SAP-DETR, we explicitly initialize a query-specific reference point for each object query, gradually aggregate them into an instance object, and then predict the distance from each side of the bounding box to these points. By rapidly attending to query-specific reference region and other conditional extreme regions from the image features, SAP-DETR can effectively bridge the gap between the salient point and the query-based Transformer detector with a significant convergency speed. Our extensive experiments have demonstrated that SAP-DETR achieves 1.4 times convergency speed with competitive performance. Under the standard training scheme, SAP-DETR stably promotes the SOTA approaches by 1.0 AP. Based on ResNet-DC-101, SAP-DETR achieves 46.9 AP.
translated by 谷歌翻译
大多数避免障碍算法仅在特定环境中有效,并且对某些新环境的适应性较低。在本文中,我们提出了一种轨迹学习(TL)的避免算法,该算法可以从一般障碍避免算法产生的轨迹中学习隐式避免机制,并实现更好的适应性。具体而言,我们定义了一个通用数据结构来描述避免障碍机制。基于这种结构,我们将学习障碍算法的学习转换为有关方向选择的多类分类问题。然后,我们设计一个人工神经网络(ANN),以通过监督学习来拟合多类分类功能,并最终获得产生观察到的轨迹的障碍物避免机制。我们的算法可以获得类似于轨迹中所示的障碍机制,并且适合看不见的环境。自动学习机制简化了应用程序中障碍算法的修改和调试。仿真结果表明,所提出的算法可以从轨迹学习避免障碍策略并获得更好的适应性。
translated by 谷歌翻译
作为一项新兴技术,据信,连接的自动驾驶汽车能够以更高的效率通过交叉点,并且与基于预先设计的基于模型或基于优化的计划通过计划相比,已经进行了数十年的相关研究,这是相比的。在过去两年中,自主交叉管理(AIM)领域(AIM)领域的分布强化学习才开始出现,并面临许多挑战。我们的研究设计了一个多级学习框架,具有各种观察范围,动作步骤和奖励期,以充分利用车辆周围的信息,并帮助找出所有车辆的最佳交互策略。我们的实验已证明,与没有它的RL相比,与RL相比,该框架可以显着提高安全性,并提高效率与基线相比。
translated by 谷歌翻译
最近已经提出了3D车道检测的方法,以解决许多自动驾驶场景(上坡/下坡,颠簸等)中不准确的车道布局问题。先前的工作在复杂的情况下苦苦挣扎,因为它们对前视图和鸟类视图(BEV)之间的空间转换以及缺乏现实数据集的简单设计。在这些问题上,我们介绍了Persformer:具有新型基于变压器的空间特征变换模块的端到端单眼3D车道检测器。我们的模型通过参考摄像头参数来参与相关的前视本地区域来生成BEV功能。 Persformer采用统一的2D/3D锚设计和辅助任务,以同时检测2D/3D车道,从而提高功能一致性并分享多任务学习的好处。此外,我们发布了第一个大型现实世界3D车道数据集之一:OpenLane,具有高质量的注释和场景多样性。 OpenLane包含200,000帧,超过880,000个实例级别的车道,14个车道类别,以及场景标签和封闭式对象注释,以鼓励开发车道检测和更多与工业相关的自动驾驶方法。我们表明,在新的OpenLane数据集和Apollo 3D Lane合成数据集中,Persformer在3D车道检测任务中的表现明显优于竞争基线,并且在OpenLane上的2D任务中也与最新的算法相当。该项目页面可在https://github.com/openperceptionx/persformer_3dlane上找到,OpenLane数据集可在https://github.com/openperceptionx/openlane上提供。
translated by 谷歌翻译
原始目的地估计在智能运输系统(其)时代的交通管理和流量模拟中起着重要作用。然而,以前的基于模型的模型面临不确定的挑战,因此存在对额外假设和额外数据的绝望需求。深度学习提供了基于基于数据的理想方法,用于通过概率分布转换连接输入和结果。虽然将深入学习的相关研究由于跨代表空间的数据转换挑战而受到限制,但特别是在该问题中的动态空间空间到异构图。为了解决它,我们提出了基于具有双层注意机制的新型图形匹配器的循环图本心匹配编码器(C-Game)。它实现了基础特征空间中的有效信息交换,并建立了空间的耦合关系。拟议的模型实现了最先进的实验结果,并在潜在就业中的空间中提供了一种新颖的推理任务框架。
translated by 谷歌翻译
变压器是一种基于关注的编码器解码器架构,彻底改变了自然语言处理领域。灵感来自这一重大成就,最近在将变形式架构调整到计算机视觉(CV)领域的一些开创性作品,这已经证明了他们对各种简历任务的有效性。依靠竞争力的建模能力,与现代卷积神经网络相比在本文中,我们已经为三百不同的视觉变压器进行了全面的审查,用于三个基本的CV任务(分类,检测和分割),提出了根据其动机,结构和使用情况组织这些方法的分类。 。由于培训设置和面向任务的差异,我们还在不同的配置上进行了评估了这些方法,以便于易于和直观的比较而不是各种基准。此外,我们已经揭示了一系列必不可少的,但可能使变压器能够从众多架构中脱颖而出,例如松弛的高级语义嵌入,以弥合视觉和顺序变压器之间的差距。最后,提出了三个未来的未来研究方向进行进一步投资。
translated by 谷歌翻译
像窗户,瓶子和镜子等玻璃状物体在现实世界中存在广泛存在。感应这些对象有许多应用,包括机器人导航和抓握。然而,由于玻璃样物体背后的任意场景,这项任务非常具有挑战性。本文旨在通过增强的边界学习解决玻璃状物体分割问题。特别是,我们首先提出了一种新的精致差分模块,其输出更精细的边界线索。然后,我们介绍了一个边缘感知点的图形卷积网络模块,以沿边界模拟全局形状。我们使用这两个模块来设计解码器,该解码器产生准确和干净的分段结果,尤其是在对象轮廓上。两个模块都是重量轻且有效的:它们可以嵌入到各种分段模型中。在最近的三个玻璃状物体分割数据集上进行了广泛的实验,包括Trans10K,MSD和GDD,我们的方法建立了新的最先进的结果。我们还说明了我们在三个通用分段数据集中的方法的强大泛化属性,包括城市景观,BDD和Coco Sift。代码和模型可用于\ url {https:/github.com/hehao13/ebrnet}。
translated by 谷歌翻译
近年来,移动机器人的安全问题引起了人们的关注。在本文中,我们提出了一种智能的物理攻击,通过从外部观察中学习障碍 - 避免机制,将移动机器人置于预设位置。我们作品的显着新颖性在于揭示具有智能和高级设计的基于物理攻击的可能性,可以带来真正的威胁,而没有对系统动态或对内部系统的访问的先验知识。传统网络空间安全中的对策无法处理这种攻击。练习,拟议的攻击的基石是积极探索受害者机器人与环境的复杂相互作用的特征,并学习对其行为的有限观察中表现出的障碍知识。然后,我们提出了最短的路径和手持攻击算法,以从巨大的运动空间中找到有效的攻击路径,从而在路径长度和活动期间分别以低成本实现了驾驶到陷阱目标。证明了算法的收敛性,并进一步得出了攻击性能范围。广泛的模拟和现实生活实验说明了拟议攻击的有效性,招呼未来对机器人系统的物理威胁和防御的研究。
translated by 谷歌翻译