Estimating 3D human motion from an egocentric video sequence is critical to human behavior understanding and applications in VR/AR. However, naively learning a mapping between egocentric videos and human motions is challenging, because the user's body is often unobserved by the front-facing camera placed on the head of the user. In addition, collecting large-scale, high-quality datasets with paired egocentric videos and 3D human motions requires accurate motion capture devices, which often limit the variety of scenes in the videos to lab-like environments. To eliminate the need for paired egocentric video and human motions, we propose a new method, Ego-Body Pose Estimation via Ego-Head Pose Estimation (EgoEgo), that decomposes the problem into two stages, connected by the head motion as an intermediate representation. EgoEgo first integrates SLAM and a learning approach to estimate accurate head motion. Then, taking the estimated head pose as input, it leverages conditional diffusion to generate multiple plausible full-body motions. This disentanglement of head and body pose eliminates the need for training datasets with paired egocentric videos and 3D human motion, enabling us to leverage large-scale egocentric video datasets and motion capture datasets separately. Moreover, for systematic benchmarking, we develop a synthetic dataset, AMASS-Replica-Ego-Syn (ARES), with paired egocentric videos and human motion. On both ARES and real data, our EgoEgo model performs significantly better than the state-of-the-art.
translated by 谷歌翻译
预测人类运动对于辅助机器人和AR/VR应用至关重要,在这种机器人和AR/VR应用中,与人类的互动需要安全舒适。同时,准确的预测取决于理解场景上下文和人类意图。尽管许多作品研究场景 - 意识到人类的运动预测,但由于缺乏以自我为中心的观点,这些观点揭示了人类意图以及运动和场景的多样性有限,因此后者在很大程度上并没有得到充实的影响。为了减少差距,我们提出了一个大规模的人类运动数据集,该数据集可提供高质量的身体姿势序列,场景扫描以及以自我为中心的视图,目光注视,这是推断人类意图的代孕。通过使用惯性传感器进行运动捕获,我们的数据收集与特定场景无关,这进一步增强了从主题中观察到的运动动力学。我们对利用眼睛目光进行以自我为中心的人类运动预测的优势进行了广泛的研究,并进行了各种最新的架构。此外,为了实现目光的全部潜力,我们提出了一种新型的网络体系结构,该架构可以在目光和运动分支之间进行双向交流。我们的网络在拟议的数据集上实现了人类运动预测的最高性能,这要归功于眼睛凝视的意图信息以及动作调制的DeNocied Ceaze特征。代码和数据可以在https://github.com/y-zheng18/gimo上找到。
translated by 谷歌翻译
在两个图像之间建立密集对应是基本计算机视觉问题,通常通过匹配本地特征描述符来解决。然而,如果没有全球意识,这种本地特征通常不足以消除类似地区。并计算图像的成对特征相关性是计算昂贵和内存密集型。为了使本地特征意识到全球背景并提高其匹配的准确性,我们介绍了DendeGap,一种新的解决方案,以获得高效密集的信念学习,在锚点上调节图形结构化神经网络。具体地,我们首先提出利用锚点的曲线图结构,以在和图像间的情况下之前提供稀疏但可靠,并通过定向边沿传播到所有图像点。我们还通过光加权消息传递层设计了图形结构化网络以广播多级上下文,并以低内存成本生成高分辨率特征映射。最后,基于预测的特征图,我们使用循环一致性引入用于准确的对应预测的粗略框架。我们的特征描述符捕获本地和全局信息,从而启用一个连续的特征字段,用于以高分辨率查询任意点。通过对大型室内和室外数据集的全面的消融实验和评估,我们证明我们的方法在大多数基准上推动了最先进的函授学习。
translated by 谷歌翻译
This study focuses on embodied agents that can follow natural language instructions to complete complex tasks in a visually-perceived environment. Existing methods rely on a large amount of (instruction, gold trajectory) pairs to learn a good policy. The high data cost and poor sample efficiency prevents the development of versatile agents that are capable of many tasks and can learn new tasks quickly. In this work, we propose a novel method, LLM-Planner, that harnesses the power of large language models (LLMs) such as GPT-3 to do few-shot planning for embodied agents. We further propose a simple but effective way to enhance LLMs with physical grounding to generate plans that are grounded in the current environment. Experiments on the ALFRED dataset show that our method can achieve very competitive few-shot performance, even outperforming several recent baselines that are trained using the full training data despite using less than 0.5% of paired training data. Existing methods can barely complete any task successfully under the same few-shot setting. Our work opens the door for developing versatile and sample-efficient embodied agents that can quickly learn many tasks.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译