聊天机器人用于许多应用程序中,例如自动化代理,智能家庭助理,在线游戏中的互动角色等。因此,确保他们不会以不希望的方式行事,对用户提供令人反感或有毒的反应。这并不是一项琐碎的任务,因为最先进的聊天机器人模型是在从互联网公开收集的大型公共数据集上培训的。本文提出了对聊天机器人中毒性的首次大规模测量。我们表明,公开可用的聊天机器人很容易在喂养有毒的查询时提供有毒的反应。更令人担忧的是,一些无毒的查询也会触发有毒反应。然后,我们着手设计和实验攻击,即毒性,该攻击依赖于微调的GPT-2来产生无毒的查询,使聊天机器人以有毒的方式做出反应。我们广泛的实验评估表明,我们的攻击对公共聊天机器人模型有效,并且优于先前工作提出的手动制作的恶意查询。我们还评估了针对毒性的三种防御机制,表明它们要么以影响聊天机器人的效用而降低攻击性能,要么仅有效地减轻了一部分攻击。这强调了对计算机安全和在线安全社区进行更多研究的需求,以确保聊天机器人模型不会伤害其用户。总体而言,我们有信心有毒可以用作审计工具,我们的工作将为设计更有效的聊天机器人安全防御措施铺平道路。
translated by 谷歌翻译
短片已成为年轻一代使用的领先媒体之一,以便在线表达自己,从而塑造在线文化中的驱动力。在这方面,Tiktok已成为往往首先发布病毒视频的平台。在本文中,我们研究了在Tiktok上发布的短片内容有助于他们的病毒。我们应用一种混合方法方法来开发码本并识别重要的病毒功能。我们这样做是如此vis- \'a-vis三个研究假设;即:1)视频内容,2)Tiktok的推荐算法,以及3)视频创建者的普及有助于病毒性。我们收集并标记400个Tiktok视频和火车分类器的数据集,以帮助我们确定最多影响景象的功能。虽然追随者的数量是最强大的预测因子,但特写和中射尺度也起到重要作用。因此视频的寿命,文本的存在以及观点。我们的研究突出了与非病毒Tiktok视频区分病毒的特征,奠定了制定额外方法来创建更多聘用的在线内容,并主动地确定可能达到大量受众的风险内容。
translated by 谷歌翻译
Hyperspectral Imaging (HSI) provides detailed spectral information and has been utilised in many real-world applications. This work introduces an HSI dataset of building facades in a light industry environment with the aim of classifying different building materials in a scene. The dataset is called the Light Industrial Building HSI (LIB-HSI) dataset. This dataset consists of nine categories and 44 classes. In this study, we investigated deep learning based semantic segmentation algorithms on RGB and hyperspectral images to classify various building materials, such as timber, brick and concrete.
translated by 谷歌翻译
Strategic test allocation plays a major role in the control of both emerging and existing pandemics (e.g., COVID-19, HIV). Widespread testing supports effective epidemic control by (1) reducing transmission via identifying cases, and (2) tracking outbreak dynamics to inform targeted interventions. However, infectious disease surveillance presents unique statistical challenges. For instance, the true outcome of interest - one's positive infectious status, is often a latent variable. In addition, presence of both network and temporal dependence reduces the data to a single observation. As testing entire populations regularly is neither efficient nor feasible, standard approaches to testing recommend simple rule-based testing strategies (e.g., symptom based, contact tracing), without taking into account individual risk. In this work, we study an adaptive sequential design involving n individuals over a period of {\tau} time-steps, which allows for unspecified dependence among individuals and across time. Our causal target parameter is the mean latent outcome we would have obtained after one time-step, if, starting at time t given the observed past, we had carried out a stochastic intervention that maximizes the outcome under a resource constraint. We propose an Online Super Learner for adaptive sequential surveillance that learns the optimal choice of tests strategies over time while adapting to the current state of the outbreak. Relying on a series of working models, the proposed method learns across samples, through time, or both: based on the underlying (unknown) structure in the data. We present an identification result for the latent outcome in terms of the observed data, and demonstrate the superior performance of the proposed strategy in a simulation modeling a residential university environment during the COVID-19 pandemic.
translated by 谷歌翻译
It is crucial to choose the appropriate scale in order to build an effective and informational representation of a complex system. Scientists carefully choose the scales for their experiments to extract the variables that describe the causalities in the system. They found that the coarse scale(macro) is sometimes more causal and informative than the numerous-parameter observations(micro). The phenomenon that the causality emerges by coarse-graining is called Causal Emergence(CE). Based on information theory, a number of recent works quantitatively showed that CE indeed happens while coarse-graining a micro model to the macro. However, the existing works have not discussed the question of why and when the CE happens. We quantitatively analyze the redistribution of uncertainties for coarse-graining and suggest that the redistribution of uncertainties is the cause of causal emergence. We further analyze the thresholds that determine if CE happens or not. From the regularity of the transition probability matrix(TPM) of discrete systems, the mathematical expressions of the model properties are derived. The values of thresholds for different operations are computed. The results provide the critical and specific conditions of CE as helpful suggestions for choosing the proper coarse-graining operation. The results also provided a new way to better understand the nature of causality and causal emergence.
translated by 谷歌翻译
Artificial intelligence (AI) has enormous potential to improve Air Force pilot training by providing actionable feedback to pilot trainees on the quality of their maneuvers and enabling instructor-less flying familiarization for early-stage trainees in low-cost simulators. Historically, AI challenges consisting of data, problem descriptions, and example code have been critical to fueling AI breakthroughs. The Department of the Air Force-Massachusetts Institute of Technology AI Accelerator (DAF-MIT AI Accelerator) developed such an AI challenge using real-world Air Force flight simulator data. The Maneuver ID challenge assembled thousands of virtual reality simulator flight recordings collected by actual Air Force student pilots at Pilot Training Next (PTN). This dataset has been publicly released at Maneuver-ID.mit.edu and represents the first of its kind public release of USAF flight training data. Using this dataset, we have applied a variety of AI methods to separate "good" vs "bad" simulator data and categorize and characterize maneuvers. These data, algorithms, and software are being released as baselines of model performance for others to build upon to enable the AI ecosystem for flight simulator training.
translated by 谷歌翻译
Real-time air pollution monitoring is a valuable tool for public health and environmental surveillance. In recent years, there has been a dramatic increase in air pollution forecasting and monitoring research using artificial neural networks (ANNs). Most of the prior work relied on modeling pollutant concentrations collected from ground-based monitors and meteorological data for long-term forecasting of outdoor ozone, oxides of nitrogen, and PM2.5. Given that traditional, highly sophisticated air quality monitors are expensive and are not universally available, these models cannot adequately serve those not living near pollutant monitoring sites. Furthermore, because prior models were built on physical measurement data collected from sensors, they may not be suitable for predicting public health effects experienced from pollution exposure. This study aims to develop and validate models to nowcast the observed pollution levels using Web search data, which is publicly available in near real-time from major search engines. We developed novel machine learning-based models using both traditional supervised classification methods and state-of-the-art deep learning methods to detect elevated air pollution levels at the US city level, by using generally available meteorological data and aggregate Web-based search volume data derived from Google Trends. We validated the performance of these methods by predicting three critical air pollutants (ozone (O3), nitrogen dioxide (NO2), and fine particulate matter (PM2.5)), across ten major U.S. metropolitan statistical areas (MSAs) in 2017 and 2018.
translated by 谷歌翻译
Obtaining photorealistic reconstructions of objects from sparse views is inherently ambiguous and can only be achieved by learning suitable reconstruction priors. Earlier works on sparse rigid object reconstruction successfully learned such priors from large datasets such as CO3D. In this paper, we extend this approach to dynamic objects. We use cats and dogs as a representative example and introduce Common Pets in 3D (CoP3D), a collection of crowd-sourced videos showing around 4,200 distinct pets. CoP3D is one of the first large-scale datasets for benchmarking non-rigid 3D reconstruction "in the wild". We also propose Tracker-NeRF, a method for learning 4D reconstruction from our dataset. At test time, given a small number of video frames of an unseen object, Tracker-NeRF predicts the trajectories of its 3D points and generates new views, interpolating viewpoint and time. Results on CoP3D reveal significantly better non-rigid new-view synthesis performance than existing baselines.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
现有的球形卷积神经网络(CNN)框架在计算方面既可以扩展又是旋转等值的。连续的方法捕获旋转模棱两可,但通常在计算上是过时的。离散的方法提供了更有利的计算性能,但付出了损失。我们开发了一个混合离散(迪斯科)组卷积,该卷积同时均具有等效性,并且在计算上可扩展到高分辨率。虽然我们的框架可以应用于任何紧凑的组,但我们专注于球体。我们的迪斯科球形卷积不仅表现出$ \ text {so}(3)$ rotational equivariance,而且还表现出一种渐近$ \ text {so}(3)/\ text {so}(so}(so}(2)$ rotationation eporational ecorivarianciancience,对于许多应用程序(其中$ \ text {so}(n)$是特殊的正交组,代表$ n $ dimensions中的旋转)。通过稀疏的张量实现,我们可以在球体上的像素数量进行线性缩放,以供计算成本和内存使用情况。对于4K球形图像,与最有效的替代替代品量球卷积相比,我们意识到节省了$ 10^9 $的计算成本和$ 10^4 $的内存使用情况。我们将迪斯科球形CNN框架应用于球体上的许多基准密集预测问题,例如语义分割和深度估计,在所有这些问题上,我们都达到了最先进的性能。
translated by 谷歌翻译