Language modeling, a central task in natural language processing, involves estimating a probability distribution over strings. In most cases, the estimated distribution sums to 1 over all finite strings. However, in some pathological cases, probability mass can ``leak'' onto the set of infinite sequences. In order to characterize the notion of leakage more precisely, this paper offers a measure-theoretic treatment of language modeling. We prove that many popular language model families are in fact tight, meaning that they will not leak in this sense. We also generalize characterizations of tightness proposed in previous works.
translated by 谷歌翻译
From smoothly pursuing moving objects to rapidly shifting gazes during visual search, humans employ a wide variety of eye movement strategies in different contexts. While eye movements provide a rich window into mental processes, building generative models of eye movements is notoriously difficult, and to date the computational objectives guiding eye movements remain largely a mystery. In this work, we tackled these problems in the context of a canonical spatial planning task, maze-solving. We collected eye movement data from human subjects and built deep generative models of eye movements using a novel differentiable architecture for gaze fixations and gaze shifts. We found that human eye movements are best predicted by a model that is optimized not to perform the task as efficiently as possible but instead to run an internal simulation of an object traversing the maze. This not only provides a generative model of eye movements in this task but also suggests a computational theory for how humans solve the task, namely that humans use mental simulation.
translated by 谷歌翻译
This paper is a technical overview of DeepMind and Google's recent work on reinforcement learning for controlling commercial cooling systems. Building on expertise that began with cooling Google's data centers more efficiently, we recently conducted live experiments on two real-world facilities in partnership with Trane Technologies, a building management system provider. These live experiments had a variety of challenges in areas such as evaluation, learning from offline data, and constraint satisfaction. Our paper describes these challenges in the hope that awareness of them will benefit future applied RL work. We also describe the way we adapted our RL system to deal with these challenges, resulting in energy savings of approximately 9% and 13% respectively at the two live experiment sites.
translated by 谷歌翻译
In dense image segmentation tasks (e.g., semantic, panoptic), existing methods can hardly generalize well to unseen image domains, predefined classes, and image resolution & quality variations. Motivated by these observations, we construct a large-scale entity segmentation dataset to explore fine-grained entity segmentation, with a strong focus on open-world and high-quality dense segmentation. The dataset contains images spanning diverse image domains and resolutions, along with high-quality mask annotations for training and testing. Given the high-quality and -resolution nature of the dataset, we propose CropFormer for high-quality segmentation, which can improve mask prediction using high-res image crops that provide more fine-grained image details than the full image. CropFormer is the first query-based Transformer architecture that can effectively ensemble mask predictions from multiple image crops, by learning queries that can associate the same entities across the full image and its crop. With CropFormer, we achieve a significant AP gain of $1.9$ on the challenging fine-grained entity segmentation task. The dataset and code will be released at http://luqi.info/entityv2.github.io/.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Automatic keyword extraction (AKE) has gained more importance with the increasing amount of digital textual data that modern computing systems process. It has various applications in information retrieval (IR) and natural language processing (NLP), including text summarisation, topic analysis and document indexing. This paper proposes a simple but effective post-processing-based universal approach to improve the performance of any AKE methods, via an enhanced level of semantic-awareness supported by PoS-tagging. To demonstrate the performance of the proposed approach, we considered word types retrieved from a PoS-tagging step and two representative sources of semantic information -- specialised terms defined in one or more context-dependent thesauri, and named entities in Wikipedia. The above three steps can be simply added to the end of any AKE methods as part of a post-processor, which simply re-evaluate all candidate keywords following some context-specific and semantic-aware criteria. For five state-of-the-art (SOTA) AKE methods, our experimental results with 17 selected datasets showed that the proposed approach improved their performances both consistently (up to 100\% in terms of improved cases) and significantly (between 10.2\% and 53.8\%, with an average of 25.8\%, in terms of F1-score and across all five methods), especially when all the three enhancement steps are used. Our results have profound implications considering the ease to apply our proposed approach to any AKE methods and to further extend it.
translated by 谷歌翻译
Solar activity is usually caused by the evolution of solar magnetic fields. Magnetic field parameters derived from photospheric vector magnetograms of solar active regions have been used to analyze and forecast eruptive events such as solar flares and coronal mass ejections. Unfortunately, the most recent solar cycle 24 was relatively weak with few large flares, though it is the only solar cycle in which consistent time-sequence vector magnetograms have been available through the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) since its launch in 2010. In this paper, we look into another major instrument, namely the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) from 1996 to 2010. The data archive of SOHO/MDI covers more active solar cycle 23 with many large flares. However, SOHO/MDI data only has line-of-sight (LOS) magnetograms. We propose a new deep learning method, named MagNet, to learn from combined LOS magnetograms, Bx and By taken by SDO/HMI along with H-alpha observations collected by the Big Bear Solar Observatory (BBSO), and to generate vector components Bx' and By', which would form vector magnetograms with observed LOS data. In this way, we can expand the availability of vector magnetograms to the period from 1996 to present. Experimental results demonstrate the good performance of the proposed method. To our knowledge, this is the first time that deep learning has been used to generate photospheric vector magnetograms of solar active regions for SOHO/MDI using SDO/HMI and H-alpha data.
translated by 谷歌翻译
Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
translated by 谷歌翻译
太阳耀斑,尤其是M级和X级耀斑,通常与冠状质量弹出(CMES)有关。它们是太空天气影响的最重要来源,可能会严重影响近地环境。因此,必须预测耀斑(尤其是X级),以减轻其破坏性和危险后果。在这里,我们介绍了几种统计和机器学习方法,以预测AR的耀斑指数(FI),这些方法通过考虑到一定时间间隔内的不同类耀斑的数量来量化AR的耀斑生产力。具体而言,我们的样本包括2010年5月至2017年12月在太阳能磁盘上出现的563个AR。25个磁性参数,由空中震动和磁性成像器(HMI)的太空天气HMI活性区域(Sharp)提供的太阳能动力学观测值(HMI)。 (SDO),表征了代理中存储在ARS中的冠状磁能,并用作预测因子。我们研究了这些尖锐的参数与ARS的FI与机器学习算法(样条回归)和重采样方法(合成少数群体过度采样技术,用于使用高斯噪声回归的合成少数群体过度采样技术,smogn简短)。基于既定关系,我们能够在接下来的1天内预测给定AR的FIS值。与其他4种流行的机器学习算法相比,我们的方法提高了FI预测的准确性,尤其是对于大型FI。此外,我们根据Borda Count方法从由9种不同的机器学习方法渲染的等级计算出尖锐参数的重要性。
translated by 谷歌翻译
视频场景图(Vidsgg)旨在将视频内容解析到场景图中,其中涉及对视频中的时尚上下文信息进行建模。但是,由于数据集中的长尾训练数据,现有Vidsgg模型的概括性能可能会受到时空条件偏置问题的影响。在这项工作中,从元学习的角度来看,我们提出了一个新颖的元视频场景图(MVSGG)框架来解决这种偏见问题。具体而言,要处理各种类型的时空条件偏差,我们的框架首先构建了一个支持集和一组查询集,其中每个查询集的数据分布与支持集W.R.T.的数据分布不同。一种条件偏见。然后,通过执行新颖的元训练和测试过程,以优化模型,以在支持集的训练后在这些查询集上获得良好的测试性能,我们的框架可以有效地指导该模型学会对偏见进行良好的概括。广泛的实验证明了我们提出的框架的功效。
translated by 谷歌翻译