Differentiable Search Indices (DSIs) encode a corpus of documents in the parameters of a model and use the same model to map queries directly to relevant document identifiers. Despite the strong performance of DSI models, deploying them in situations where the corpus changes over time is computationally expensive because reindexing the corpus requires re-training the model. In this work, we introduce DSI++, a continual learning challenge for DSI to incrementally index new documents while being able to answer queries related to both previously and newly indexed documents. Across different model scales and document identifier representations, we show that continual indexing of new documents leads to considerable forgetting of previously indexed documents. We also hypothesize and verify that the model experiences forgetting events during training, leading to unstable learning. To mitigate these issues, we investigate two approaches. The first focuses on modifying the training dynamics. Flatter minima implicitly alleviate forgetting, so we optimize for flatter loss basins and show that the model stably memorizes more documents (+12\%). Next, we introduce a generative memory to sample pseudo-queries for documents and supplement them during continual indexing to prevent forgetting for the retrieval task. Extensive experiments on novel continual indexing benchmarks based on Natural Questions (NQ) and MS MARCO demonstrate that our proposed solution mitigates forgetting by a significant margin. Concretely, it improves the average Hits@10 by $+21.1\%$ over competitive baselines for NQ and requires $6$ times fewer model updates compared to re-training the DSI model for incrementally indexing five corpora in a sequence.
translated by 谷歌翻译
基于变压器的大语言模型(LLM)的最新进展已导致许多任务的性能改进。这些收益随着模型的大小而大幅增加,可能导致推理时间缓慢且昂贵的使用。但是,实际上,LLMS制造的一代人由不同的难度组成。尽管某些预测确实从模型的全部容量中受益,但其他延续更为微不足道,可以通过减少的计算来解决。在这项工作中,我们介绍了自信的自适应语言建模(平静),该框架用于动态分配每个输入和生成时间段的不同计算。提前退出解码涉及我们在这里解决的几个挑战,例如:(1)使用什么信心措施; (2)将序列级别的约束连接到局部人口退出决策; (3)由于以前的令牌中的早期退出而返回丢失的隐藏表示形式。通过对三个不同文本生成任务的理论分析和经验实验,我们证明了框架在减少计算的效果 - 潜在的速度最高为$ \ times 3 $ - 同时可维持高性能。
translated by 谷歌翻译
及时调整是以参数有效的方式对预训练的预训练语言模型的新范式。在这里,我们探讨了超级核武器的使用来产生超预价:我们提出了HyperPrompt,这是一种用于迅速基于变形金刚自我注意的任务调节的新型体系结构。超预要是通过超网络通过一代人来学习的端到端。 HyperPrompt允许网络学习特定于任务的功能地图,其中超预告是要参与的查询的任务全局记忆,同时启用了任务之间的灵活信息共享。我们表明,HyperPrompt与强大的多任务学习基线具有竞争力,其额外的任务条件参数的$ 0.14 \%$ $ \%,实现了出色的参数和计算效率。通过广泛的经验实验,我们证明,超级启示可以比强大的T5多任务学习基准和参数效率高效的适配器变体获得卓越的性能,包括及时调整和SuplyFormer ++在许多模型尺寸的自然语言理解胶水和SuperGrue的基准上。
translated by 谷歌翻译
尽管最近的多任务学习和自然语言处理的转移学习成功(NLP),但很少有效地研究了在训练中缩放任务数量的效果。迈出了这一目标,介绍了Exmix(极端混合物):跨越各个领域和任务家庭的大规模收集107个监督的NLP任务。使用EXMIX,我们研究了最大规模的多任务预培训的影响,并分析了普通任务家庭之间的共同培训转移。通过此分析,我们表明手动策划用于多任务预训练的理想任务,并不简单,而且多任务缩放可以自行改进模型。最后,我们提出了Ext5:使用自我监督跨度去噪和监督EXMIX的多任务目标预先训练的模型。通过广泛的实验,我们表明Ext5优于超级格,宝石,彩虹,封闭书QA任务的强大T5基线,以及Exmix之外的几个任务。 Ext5在预训练时也显着提高了样品效率。
translated by 谷歌翻译
Existing federated classification algorithms typically assume the local annotations at every client cover the same set of classes. In this paper, we aim to lift such an assumption and focus on a more general yet practical non-IID setting where every client can work on non-identical and even disjoint sets of classes (i.e., client-exclusive classes), and the clients have a common goal which is to build a global classification model to identify the union of these classes. Such heterogeneity in client class sets poses a new challenge: how to ensure different clients are operating in the same latent space so as to avoid the drift after aggregation? We observe that the classes can be described in natural languages (i.e., class names) and these names are typically safe to share with all parties. Thus, we formulate the classification problem as a matching process between data representations and class representations and break the classification model into a data encoder and a label encoder. We leverage the natural-language class names as the common ground to anchor the class representations in the label encoder. In each iteration, the label encoder updates the class representations and regulates the data representations through matching. We further use the updated class representations at each round to annotate data samples for locally-unaware classes according to similarity and distill knowledge to local models. Extensive experiments on four real-world datasets show that the proposed method can outperform various classical and state-of-the-art federated learning methods designed for learning with non-IID data.
translated by 谷歌翻译
The rise in data has led to the need for dimension reduction techniques, especially in the area of non-scalar variables, including time series, natural language processing, and computer vision. In this paper, we specifically investigate dimension reduction for time series through functional data analysis. Current methods for dimension reduction in functional data are functional principal component analysis and functional autoencoders, which are limited to linear mappings or scalar representations for the time series, which is inefficient. In real data applications, the nature of the data is much more complex. We propose a non-linear function-on-function approach, which consists of a functional encoder and a functional decoder, that uses continuous hidden layers consisting of continuous neurons to learn the structure inherent in functional data, which addresses the aforementioned concerns in the existing approaches. Our approach gives a low dimension latent representation by reducing the number of functional features as well as the timepoints at which the functions are observed. The effectiveness of the proposed model is demonstrated through multiple simulations and real data examples.
translated by 谷歌翻译
Landing an unmanned aerial vehicle unmanned aerial vehicle (UAV) on top of an unmanned surface vehicle (USV) in harsh open waters is a challenging problem, owing to forces that can damage the UAV due to a severe roll and/or pitch angle of the USV during touchdown. To tackle this, we propose a novel model predictive control (MPC) approach enabling a UAV to land autonomously on a USV in these harsh conditions. The MPC employs a novel objective function and an online decomposition of the oscillatory motion of the vessel to predict, attempt, and accomplish the landing during near-zero tilt of the landing platform. The nonlinear prediction of the motion of the vessel is performed using visual data from an onboard camera. Therefore, the system does not require any communication with the USV or a control station. The proposed method was analyzed in numerous robotics simulations in harsh and extreme conditions and further validated in various real-world scenarios.
translated by 谷歌翻译
Multiple studies have focused on predicting the prospective popularity of an online document as a whole, without paying attention to the contributions of its individual parts. We introduce the task of proactively forecasting popularities of sentences within online news documents solely utilizing their natural language content. We model sentence-specific popularity forecasting as a sequence regression task. For training our models, we curate InfoPop, the first dataset containing popularity labels for over 1.7 million sentences from over 50,000 online news documents. To the best of our knowledge, this is the first dataset automatically created using streams of incoming search engine queries to generate sentence-level popularity annotations. We propose a novel transfer learning approach involving sentence salience prediction as an auxiliary task. Our proposed technique coupled with a BERT-based neural model exceeds nDCG values of 0.8 for proactive sentence-specific popularity forecasting. Notably, our study presents a non-trivial takeaway: though popularity and salience are different concepts, transfer learning from salience prediction enhances popularity forecasting. We release InfoPop and make our code publicly available: https://github.com/sayarghoshroy/InfoPopularity
translated by 谷歌翻译
The ability for an agent to continuously learn new skills without catastrophically forgetting existing knowledge is of critical importance for the development of generally intelligent agents. Most methods devised to address this problem depend heavily on well-defined task boundaries, and thus depend on human supervision. Our task-agnostic method, Self-Activating Neural Ensembles (SANE), uses a modular architecture designed to avoid catastrophic forgetting without making any such assumptions. At the beginning of each trajectory, a module in the SANE ensemble is activated to determine the agent's next policy. During training, new modules are created as needed and only activated modules are updated to ensure that unused modules remain unchanged. This system enables our method to retain and leverage old skills, while growing and learning new ones. We demonstrate our approach on visually rich procedurally generated environments.
translated by 谷歌翻译
We present a novel hybrid learning method, HyLEAR, for solving the collision-free navigation problem for self-driving cars in POMDPs. HyLEAR leverages interposed learning to embed knowledge of a hybrid planner into a deep reinforcement learner to faster determine safe and comfortable driving policies. In particular, the hybrid planner combines pedestrian path prediction and risk-aware path planning with driving-behavior rule-based reasoning such that the driving policies also take into account, whenever possible, the ride comfort and a given set of driving-behavior rules. Our experimental performance analysis over the CARLA-CTS1 benchmark of critical traffic scenarios revealed that HyLEAR can significantly outperform the selected baselines in terms of safety and ride comfort.
translated by 谷歌翻译