We present a novel hybrid learning method, HyLEAR, for solving the collision-free navigation problem for self-driving cars in POMDPs. HyLEAR leverages interposed learning to embed knowledge of a hybrid planner into a deep reinforcement learner to faster determine safe and comfortable driving policies. In particular, the hybrid planner combines pedestrian path prediction and risk-aware path planning with driving-behavior rule-based reasoning such that the driving policies also take into account, whenever possible, the ride comfort and a given set of driving-behavior rules. Our experimental performance analysis over the CARLA-CTS1 benchmark of critical traffic scenarios revealed that HyLEAR can significantly outperform the selected baselines in terms of safety and ride comfort.
translated by 谷歌翻译
本文介绍了一个混合在线的部分可观察到的马尔可夫决策过程(POMDP)计划系统,该系统在存在环境中其他代理商引入的多模式不确定性的情况下解决了自主导航的问题。作为一个特别的例子,我们考虑了密集的行人和障碍物中的自主航行问题。该问题的流行方法首先使用完整的计划者(例如,混合A*)生成一条路径,具有对不确定性的临时假设,然后使用基于在线树的POMDP求解器来解决问题的不确定性,并控制问题的有限方面(即沿着路径的速度)。我们提出了一种更有能力和响应的实时方法,使POMDP规划师能够控制更多的自由度(例如,速度和标题),以实现更灵活,更有效的解决方案。这种修改大大扩展了POMDP规划师必须推荐的国家空间区域,从而大大提高了在实时控制提供的有限计算预算中找到有效的推出政策的重要性。我们的关键见解是使用多Query运动计划技术(例如,概率路线图或快速行进方法)作为先验,以快速生成在有限的地平线搜索中POMDP规划树可能达到的每个状态的高效推出政策。我们提出的方法产生的轨迹比以前的方法更安全,更有效,即使在较长的计划范围内密集拥挤的动态环境中。
translated by 谷歌翻译
由于交通环境的复杂性和波动性,自主驾驶中的决策是一个显着难的问题。在这个项目中,我们使用深度Q-network,以及基于规则的限制来使车道变化的决定。可以通过将高级横向决策与基于低级规则的轨迹监视相结合来获得安全高效的车道改变行为。预计该代理商在培训中,在实际的UDAcity模拟器中进行了适当的车道更换操作,总共100次发作。结果表明,基于规则的DQN比DQN方法更好地执行。基于规则的DQN达到0.8的安全速率和47英里/小时的平均速度
translated by 谷歌翻译
行人在场的运动控制算法对于开发安全可靠的自动驾驶汽车(AV)至关重要。传统运动控制算法依赖于手动设计的决策政策,这些政策忽略了AV和行人之间的相互作用。另一方面,深度强化学习的最新进展允许在没有手动设计的情况下自动学习政策。为了解决行人在场的决策问题,作者介绍了一个基于社会价值取向和深入强化学习(DRL)的框架,该框架能够以不同的驾驶方式生成决策政策。该政策是在模拟环境中使用最先进的DRL算法培训的。还引入了适合DRL训练的新型计算效率的行人模型。我们执行实验以验证我们的框架,并对使用两种不同的无模型深钢筋学习算法获得的策略进行了比较分析。模拟结果表明,开发的模型如何表现出自然的驾驶行为,例如短暂的驾驶行为,以促进行人的穿越。
translated by 谷歌翻译
人类行为的不确定性对拥挤的城市环境中的自动驾驶构成了重大挑战。部分可观察到的马尔可夫决策过程(POMDP)为不确定性下的计划提供了一个原则的框架,通常利用蒙特卡洛抽样来实现在线绩效进行复杂的任务。但是,抽样还通过潜在缺失关键事件引起了安全问题。为了解决这个问题,我们提出了一种新的算法,学习对驾驶行为(领导者)的关注,这些算法在计划过程中学习了批判性人类行为。领导者学习了一个神经网络生成器,以实时情况下对人类行为的关注。它将注意力集成到信仰空间计划者中,使用重要性抽样来偏向关键事件。为了训练该算法,我们让注意力生成器和计划者组成了最小游戏。通过解决Min-Max游戏,领导者学会了无需人类标签即可执行风险意识的计划。
translated by 谷歌翻译
在典型的自主驾驶堆栈中,计划和控制系统代表了两个最关键的组件,其中传感器检索并通过感知算法处理的数据用于实施安全舒适的自动驾驶行为。特别是,计划模块可以预测自动驾驶汽车应遵循正确的高级操作的路径,而控制系统则执行一系列低级动作,控制转向角度,油门和制动器。在这项工作中,我们提出了一个无模型的深钢筋学习计划者培训一个可以预测加速度和转向角度的神经网络,从而获得了一个单个模块,可以使用自我自我的本地化和感知算法处理的数据来驱动车辆-驾车。特别是,在模拟中进行了全面训练的系统能够在模拟和帕尔马市现实世界中的无障碍环境中平稳驱动,证明该系统具有良好的概括能力,也可以驱动驱动在培训方案之外的那些部分。此外,为了将系统部署在真正的自动驾驶汽车上,并减少模拟和现实世界中的差距,我们还开发了一个由微小的神经网络表示的模块,能够在期间重现真正的车辆动态行为模拟的培训。
translated by 谷歌翻译
自动驾驶汽车是一项不断发展的技术,旨在通过自动操作从车道变更到超车来提高安全性,可访问性,效率和便利性。超车是自动驾驶汽车最具挑战性的操作之一,当前的自动超车技术仅限于简单情况。本文研究了如何通过允许动作流产来提高自主超车的安全性。我们提出了一个基于深层Q网络的决策过程,以确定是否以及何时需要中止超车的操作。拟议的算法在与交通情况不同的模拟中进行了经验评估,这表明所提出的方法可以改善超车手动过程中的安全性。此外,使用自动班车Iseauto在现实世界实验中证明了该方法。
translated by 谷歌翻译
不确定性下的实时计划对于在复杂的动态环境中运行的机器人至关重要。例如,考虑一下,汽车,摩托车,公共汽车等不受监管的城市交通不受监管的自动机器人车辆驾驶。机器人车辆必须在短期和长时间内计划,以便与许多具有不确定意图和不确定意图的交通参与者互动有效驾驶。然而,在很长一段时间内明确规划会产生过度的计算成本,并且在实时限制下是不切实际的。为了实现大规模计划的实时性能,这项工作从树木搜索驾驶(Lets-Drive)中引入了一种新的算法学习,该算法将计划和学习集成到封闭的循环中,并将其应用于拥挤的城市交通中的自动驾驶在模拟中。具体而言,让我们驱动器从在线规划者提供的数据中学习策略及其价值函数,该数据搜索了稀疏采样的信念树;在线规划师依次使用学习的策略和价值功能作为启发式方法来扩展其运行时性能,以实现实时机器人控制。重复这两个步骤以形成一个封闭的循环,以便计划者和学习者相互通知并同步改进。该算法以自我监督的方式自行学习,而无需人工努力明确的数据标记。实验结果表明,让驱动器的表现优于计划或学习,以及计划和学习的开环集成。
translated by 谷歌翻译
深度强化学习(DRL)是一种仅从演示和经验中学习机器人控制政策的有前途的方法。为了涵盖机器人的整个动态行为,DRL训练是通常在仿真环境中得出的主动探索过程。尽管这种模拟培训廉价且快速,但将DRL算法应用于现实世界的设置很困难。如果对代理进行训练直到它们在模拟中安全执行,则由于模拟动力学和物理机器人之间的差异引起的SIM到真实差距,将其传输到物理系统很困难。在本文中,我们提出了一种在线培训DRL代理的方法,可以使用基于模型的安全主管在实体车辆上自动驾驶。我们的解决方案使用监督系统检查代理选择的操作是安全还是不安全,并确保在车辆上始终采取安全措施。这样,我们可以在安全,快速,有效地训练DRL算法的同时绕过SIM到现实的问题。我们提供各种现实世界实验,在线培训一辆小型实体车辆,可以自动驾驶,没有事先模拟培训。评估结果表明,我们的方法在未崩溃的同时提高了样品效率的训练代理,并且受过训练的代理比在模拟中训练的代理表现出更好的驾驶性能。
translated by 谷歌翻译
Proper functioning of connected and automated vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. Thus, collaboration decision-making for CAVs is essential to generate appropriate driving behaviors to enhance the safety and efficiency of mixed autonomy traffic. In recent years, deep reinforcement learning (DRL) has been widely used in solving decision-making problems. However, the existing DRL-based methods have been mainly focused on solving the decision-making of a single CAV. Using the existing DRL-based methods in mixed autonomy traffic cannot accurately represent the mutual effects of vehicles and model dynamic traffic environments. To address these shortcomings, this article proposes a graph reinforcement learning (GRL) approach for multi-agent decision-making of CAVs in mixed autonomy traffic. First, a generic and modular GRL framework is designed. Then, a systematic review of DRL and GRL methods is presented, focusing on the problems addressed in recent research. Moreover, a comparative study on different GRL methods is further proposed based on the designed framework to verify the effectiveness of GRL methods. Results show that the GRL methods can well optimize the performance of multi-agent decision-making for CAVs in mixed autonomy traffic compared to the DRL methods. Finally, challenges and future research directions are summarized. This study can provide a valuable research reference for solving the multi-agent decision-making problems of CAVs in mixed autonomy traffic and can promote the implementation of GRL-based methods into intelligent transportation systems. The source code of our work can be found at https://github.com/Jacklinkk/Graph_CAVs.
translated by 谷歌翻译
Development of navigation algorithms is essential for the successful deployment of robots in rapidly changing hazardous environments for which prior knowledge of configuration is often limited or unavailable. Use of traditional path-planning algorithms, which are based on localization and require detailed obstacle maps with goal locations, is not possible. In this regard, vision-based algorithms hold great promise, as visual information can be readily acquired by a robot's onboard sensors and provides a much richer source of information from which deep neural networks can extract complex patterns. Deep reinforcement learning has been used to achieve vision-based robot navigation. However, the efficacy of these algorithms in environments with dynamic obstacles and high variation in the configuration space has not been thoroughly investigated. In this paper, we employ a deep Dyna-Q learning algorithm for room evacuation and obstacle avoidance in partially observable environments based on low-resolution raw image data from an onboard camera. We explore the performance of a robotic agent in environments containing no obstacles, convex obstacles, and concave obstacles, both static and dynamic. Obstacles and the exit are initialized in random positions at the start of each episode of reinforcement learning. Overall, we show that our algorithm and training approach can generalize learning for collision-free evacuation of environments with complex obstacle configurations. It is evident that the agent can navigate to a goal location while avoiding multiple static and dynamic obstacles, and can escape from a concave obstacle while searching for and navigating to the exit.
translated by 谷歌翻译
自主驾驶有可能彻底改变流动性,因此是一个积极的研究领域。实际上,自动驾驶汽车的行为必须是可以接受的,即高效,安全和可解释的。尽管香草钢筋学习(RL)找到了表现的行为策略,但它们通常是不安全且无法解释的。安全性是通过安全的RL方法引入的,但是它们仍然无法解释,因为学习的行为在没有分别进行建模的情况下共同优化了安全性和性能。可解释的机器学习很少应用于RL。本文提出了SAFEDQN,它允许在仍然有效的同时使自动驾驶汽车的行为安全可解释。 SAFEDQN在算法上透明的同时,在预期风险和效用的效用之间提供了可以理解的语义权衡。我们表明,SAFEDQN为各种场景找到了可解释且安全的驾驶政策,并展示了最先进的显着性技术如何帮助评估风险和实用性。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
我们解决了由具有不同驱动程序行为的道路代理人填充的密集模拟交通环境中的自我车辆导航问题。由于其异构行为引起的代理人的不可预测性,这种环境中的导航是挑战。我们提出了一种新的仿真技术,包括丰富现有的交通模拟器,其具有与不同程度的侵略性程度相对应的行为丰富的轨迹。我们在驾驶员行为建模算法的帮助下生成这些轨迹。然后,我们使用丰富的模拟器培训深度加强学习(DRL)策略,包括一组高级车辆控制命令,并在测试时间使用此策略来执行密集流量的本地导航。我们的政策隐含地模拟了交通代理商之间的交互,并计算了自助式驾驶员机动,例如超速,超速,编织和突然道路变化的激进驾驶员演习的安全轨迹。我们增强的行为丰富的模拟器可用于生成由对应于不同驱动程序行为和流量密度的轨迹组成的数据集,我们的行为的导航方案可以与最先进的导航算法相结合。
translated by 谷歌翻译
通过直接将感知输入映射到机器人控制命令中,深入的强化学习(DRL)算法已被证明在机器人导航中有效,尤其是在未知环境中。但是,大多数现有方法忽略导航中的局部最小问题,从而无法处理复杂的未知环境。在本文中,我们提出了第一个基于DRL的导航方法,该方法由具有连续动作空间,自适应向前模拟时间(AFST)的SMDP建模,以克服此问题。具体而言,我们通过修改其GAE来更好地估计SMDP中的策略梯度,改善了指定SMDP问题的分布式近端策略优化(DPPO)算法。我们在模拟器和现实世界中评估了我们的方法。
translated by 谷歌翻译
自动化驾驶系统(ADSS)近年来迅速进展。为确保这些系统的安全性和可靠性,在未来的群心部署之前正在进行广泛的测试。测试道路上的系统是最接近真实世界和理想的方法,但它非常昂贵。此外,使用此类现实世界测试覆盖稀有角案件是不可行的。因此,一种流行的替代方案是在一些设计精心设计的具有挑战性场景中评估广告的性能,A.k.a.基于场景的测试。高保真模拟器已广泛用于此设置中,以最大限度地提高测试的灵活性和便利性 - 如果发生的情况。虽然已经提出了许多作品,但为测试特定系统提供了各种框架/方法,但这些作品之间的比较和连接仍然缺失。为了弥合这一差距,在这项工作中,我们在高保真仿真中提供了基于场景的测试的通用制定,并对现有工作进行了文献综述。我们进一步比较了它们并呈现开放挑战以及潜在的未来研究方向。
translated by 谷歌翻译
The last decade witnessed increasingly rapid progress in self-driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence. The objective of this paper is to survey the current state-of-the-art on deep learning technologies used in autonomous driving. We start by presenting AI-based self-driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration and motion control algorithms. We investigate both the modular perception-planning-action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources and computational hardware. The comparison presented in this survey helps to gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices. 1
translated by 谷歌翻译
在自主驾驶场中,人类知识融合到深增强学习(DRL)通常基于在模拟环境中记录的人类示范。这限制了在现实世界交通中的概率和可行性。我们提出了一种两级DRL方法,从真实的人类驾驶中学习,实现优于纯DRL代理的性能。培训DRL代理商是在Carla的框架内完成了机器人操作系统(ROS)。对于评估,我们设计了不同的真实驾驶场景,可以将提出的两级DRL代理与纯DRL代理进行比较。在从人驾驶员中提取“良好”行为之后,例如在信号交叉口中的预期,该代理变得更有效,并且驱动更安全,这使得这种自主代理更适应人体机器人交互(HRI)流量。
translated by 谷歌翻译
然而,由于各种交通/道路结构方案以及人类驾驶员行为的长时间分布,自动驾驶的感应,感知和本地化取得了重大进展,因此,对于智能车辆来说,这仍然是一个持开放态度的挑战始终知道如何在有可用的传感 /感知 /本地化信息的道路上做出和执行最佳决定。在本章中,我们讨论了人工智能,更具体地说,强化学习如何利用运营知识和安全反射来做出战略性和战术决策。我们讨论了一些与强化学习解决方案的鲁棒性及其对自动驾驶驾驶策略的实践设计有关的具有挑战性的问题。我们专注于在高速公路上自动驾驶以及增强学习,车辆运动控制和控制屏障功能的整合,从而实现了可靠的AI驾驶策略,可以安全地学习和适应。
translated by 谷歌翻译
最近,自主驾驶社会上有许多进展,吸引了学术界和工业的很多关注。然而,现有的作品主要专注于汽车,自动驾驶卡车算法和模型仍然需要额外的开发。在本文中,我们介绍了智能自动驾驶卡车系统。我们所呈现的系统由三个主要组成部分组成,1)一个现实的交通仿真模块,用于在测试场景中产生现实的交通流量,2)设计和评估了在现实世界部署中模仿实际卡车响应的高保真卡车模型,3 )具有基于学习的决策算法和多模轨迹策划仪的智能计划模块,考虑到卡车的约束,道路斜率变化和周围的交通流量。我们为每个组分单独提供定量评估,以证明每个部件的保真度和性能。我们还将我们的建议系统部署在真正的卡车上,并进行真实的世界实验,表明我们的系统能力缓解了SIM-TO-REAL差距。我们的代码可以在https://github.com/inceptioresearch/iits提供
translated by 谷歌翻译