视觉摄像头是超越视觉线(B-VLOS)无人机操作的吸引人的设备,因为它们的尺寸,重量,功率和成本较低,并且可以为GPS失败提供多余的方式。但是,最新的视觉定位算法无法匹配由于照明或观点而导致外观明显不同的视觉数据。本文介绍了Isimloc,这是一种条件/观点一致的层次结构全局重新定位方法。 Isimloc的位置功能可用于在不断变化的外观和观点下搜索目标图像。此外,我们的分层全局重新定位模块以粗到精细的方式完善,使Isimloc可以执行快速准确的估计。我们在一个数据集上评估了我们的方法,其中具有外观变化和一个数据集,该数据集的重点是在复杂的环境中长期飞行进行大规模匹配。在我们的两个数据集中,Isimloc在1.5s推导时间的成功检索率达到88.7 \%和83.8 \%,而使用下一个最佳方法,为45.8%和39.7%。这些结果证明了在各种环境中的强大定位。
translated by 谷歌翻译
我们提出Automerge,这是一种LIDAR数据处理框架,用于将大量地图段组装到完整的地图中。传统的大规模地图合并方法对于错误的数据关联是脆弱的,并且主要仅限于离线工作。 Automerge利用多观点的融合和自适应环路闭合检测来进行准确的数据关联,并且它使用增量合并来从随机顺序给出的单个轨迹段组装大图,没有初始估计。此外,在组装段后,自动制度可以执行良好的匹配和姿势图片优化,以在全球范围内平滑合并的地图。我们展示了城市规模合并(120公里)和校园规模重复合并(4.5公里x 8)的汽车。该实验表明,自动化(i)在段检索中超过了第二和第三最佳方法的14%和24%的召回,(ii)在120 km大尺度地图组件(III)中实现了可比较的3D映射精度,IT对于暂时的重新审视是强大的。据我们所知,Automerge是第一种映射方法,它可以在无GPS的帮助下合并数百公里的单个细分市场。
translated by 谷歌翻译
对于长期自治,大多数位置识别方法主要在简化的方案或模拟数据集上进行评估,该数据集无法提供可靠的证据来评估当前同时定位和映射的准备就绪(SLAM)。在本文中,我们提出了一个长期的位置识别数据集,用于在大规模动态环境下用于移动定位。该数据集包括一个校园规模的轨道和城市规模的轨道:1)校园轨道重点关注长期财产,我们在10个轨迹上记录Lidar设备和一个全向相机,并且每个轨迹在变体下重复记录8次照明条件。 2)城市轨道聚焦大型物业,我们将激光雷达设备安装在车辆上,并穿过120公里种类在城市环境中。每个轨迹都提供了两个轨道的地面真实位置,这是从全球位置系统中获得的,具有额外的基于ICP的点云的细化。为了简化评估程序,我们还为Python-API提供了一组地点识别指标,以快速加载我们的数据集并根据不同方法评估识别性能。该数据集的目标是寻找具有高位置识别精度和鲁棒性的方法,并提供长期自治的真正机器人系统。可以从https://github.com/metaslam/alita访问数据集和提供的工具。
translated by 谷歌翻译
从开放式网络策略的大规模未过滤数据集培训的语言模型获取从其培训数据的系统偏差,偏见和有害视图。我们提出了一种从Web级数据集上以编程方式识别和删除有害文本的方法。预先训练的语言模型用于计算在特定文档上调节的研究员写入触发短语的日志可能性,该语言用于从数据集中识别和过滤文档。我们证明,在该过滤的数据集上培训的模型表现出较低的倾向,以产生有害文本,与未过滤的基线相比,标准语言建模基准的性能下降了下降。通过从标准语言建模基准测试的讨论语音和其他不良内容的介绍来提供对这种性能差异的部分解释。最后,我们讨论了这种方法的概括以及如何通过研究人员使用反映特定值的触发短语来构建与其值更紧密对齐的语言模型。
translated by 谷歌翻译
我们提出了块茎:一种简单的时空视频动作检测解决方案。与依赖于离线演员检测器或手工设计的演员位置假设的现有方法不同,我们建议通过同时执行动作定位和识别从单个表示来直接检测视频中的动作微管。块茎学习一组管芯查询,并利用微调模块来模拟视频剪辑的动态时空性质,其有效地加强了与在时空空间中的演员位置假设相比的模型容量。对于包含过渡状态或场景变更的视频,我们提出了一种上下文意识的分类头来利用短期和长期上下文来加强行动分类,以及用于检测精确的时间动作程度的动作开关回归头。块茎直接产生具有可变长度的动作管,甚至对长视频剪辑保持良好的结果。块茎在常用的动作检测数据集AVA,UCF101-24和JHMDB51-21上优于先前的最先进。
translated by 谷歌翻译
Machine learning models are typically evaluated by computing similarity with reference annotations and trained by maximizing similarity with such. Especially in the bio-medical domain, annotations are subjective and suffer from low inter- and intra-rater reliability. Since annotations only reflect the annotation entity's interpretation of the real world, this can lead to sub-optimal predictions even though the model achieves high similarity scores. Here, the theoretical concept of Peak Ground Truth (PGT) is introduced. PGT marks the point beyond which an increase in similarity with the reference annotation stops translating to better Real World Model Performance (RWMP). Additionally, a quantitative technique to approximate PGT by computing inter- and intra-rater reliability is proposed. Finally, three categories of PGT-aware strategies to evaluate and improve model performance are reviewed.
translated by 谷歌翻译
A "heart attack" or myocardial infarction (MI), occurs when an artery supplying blood to the heart is abruptly occluded. The "gold standard" method for imaging MI is Cardiovascular Magnetic Resonance Imaging (MRI), with intravenously administered gadolinium-based contrast (late gadolinium enhancement). However, no "gold standard" fully automated method for the quantification of MI exists. In this work, we propose an end-to-end fully automatic system (MyI-Net) for the detection and quantification of MI in MRI images. This has the potential to reduce the uncertainty due to the technical variability across labs and inherent problems of the data and labels. Our system consists of four processing stages designed to maintain the flow of information across scales. First, features from raw MRI images are generated using feature extractors built on ResNet and MoblieNet architectures. This is followed by the Atrous Spatial Pyramid Pooling (ASPP) to produce spatial information at different scales to preserve more image context. High-level features from ASPP and initial low-level features are concatenated at the third stage and then passed to the fourth stage where spatial information is recovered via up-sampling to produce final image segmentation output into: i) background, ii) heart muscle, iii) blood and iv) scar areas. New models were compared with state-of-art models and manual quantification. Our models showed favorable performance in global segmentation and scar tissue detection relative to state-of-the-art work, including a four-fold better performance in matching scar pixels to contours produced by clinicians.
translated by 谷歌翻译
Graph neural networks (GNN) have become the default machine learning model for relational datasets, including protein interaction networks, biological neural networks, and scientific collaboration graphs. We use tools from statistical physics and random matrix theory to precisely characterize generalization in simple graph convolution networks on the contextual stochastic block model. The derived curves are phenomenologically rich: they explain the distinction between learning on homophilic and heterophilic graphs and they predict double descent whose existence in GNNs has been questioned by recent work. Our results are the first to accurately explain the behavior not only of a stylized graph learning model but also of complex GNNs on messy real-world datasets. To wit, we use our analytic insights about homophily and heterophily to improve performance of state-of-the-art graph neural networks on several heterophilic benchmarks by a simple addition of negative self-loop filters.
translated by 谷歌翻译
In this paper, we propose a new neural network architecture based on the H2 matrix. Even though networks with H2-inspired architecture already exist, and our approach is designed to reduce memory costs and improve performance by taking into account the sparsity template of the H2 matrix. In numerical comparison with alternative neural networks, including the known H2-based ones, our architecture showed itself as beneficial in terms of performance, memory, and scalability.
translated by 谷歌翻译
Existing 3D-aware image synthesis approaches mainly focus on generating a single canonical object and show limited capacity in composing a complex scene containing a variety of objects. This work presents DisCoScene: a 3Daware generative model for high-quality and controllable scene synthesis. The key ingredient of our method is a very abstract object-level representation (i.e., 3D bounding boxes without semantic annotation) as the scene layout prior, which is simple to obtain, general to describe various scene contents, and yet informative to disentangle objects and background. Moreover, it serves as an intuitive user control for scene editing. Based on such a prior, the proposed model spatially disentangles the whole scene into object-centric generative radiance fields by learning on only 2D images with the global-local discrimination. Our model obtains the generation fidelity and editing flexibility of individual objects while being able to efficiently compose objects and the background into a complete scene. We demonstrate state-of-the-art performance on many scene datasets, including the challenging Waymo outdoor dataset. Project page: https://snap-research.github.io/discoscene/
translated by 谷歌翻译