盲图修复(IR)是计算机视觉中常见但充满挑战的问题。基于经典模型的方法和最新的深度学习(DL)方法代表了有关此问题的两种不同方法,每种方法都有自己的优点和缺点。在本文中,我们提出了一种新颖的盲图恢复方法,旨在整合它们的两种优势。具体而言,我们为盲IR构建了一个普通的贝叶斯生成模型,该模型明确描绘了降解过程。在此提出的模型中,PICEL的非I.I.D。高斯分布用于适合图像噪声。它的灵活性比简单的I.I.D。在大多数常规方法中采用的高斯或拉普拉斯分布,以处理图像降解中包含的更复杂的噪声类型。为了解决该模型,我们设计了一个变异推理算法,其中所有预期的后验分布都被参数化为深神经网络,以提高其模型能力。值得注意的是,这种推论算法诱导统一的框架共同处理退化估计和图像恢复的任务。此外,利用了前一种任务中估计的降解信息来指导后一种红外过程。对两项典型的盲型IR任务进行实验,即图像降解和超分辨率,表明所提出的方法比当前最新的方法实现了卓越的性能。
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
For Prognostics and Health Management (PHM) of Lithium-ion (Li-ion) batteries, many models have been established to characterize their degradation process. The existing empirical or physical models can reveal important information regarding the degradation dynamics. However, there is no general and flexible methods to fuse the information represented by those models. Physics-Informed Neural Network (PINN) is an efficient tool to fuse empirical or physical dynamic models with data-driven models. To take full advantage of various information sources, we propose a model fusion scheme based on PINN. It is implemented by developing a semi-empirical semi-physical Partial Differential Equation (PDE) to model the degradation dynamics of Li-ion-batteries. When there is little prior knowledge about the dynamics, we leverage the data-driven Deep Hidden Physics Model (DeepHPM) to discover the underlying governing dynamic models. The uncovered dynamics information is then fused with that mined by the surrogate neural network in the PINN framework. Moreover, an uncertainty-based adaptive weighting method is employed to balance the multiple learning tasks when training the PINN. The proposed methods are verified on a public dataset of Li-ion Phosphate (LFP)/graphite batteries.
translated by 谷歌翻译
New architecture GPUs like A100 are now equipped with multi-instance GPU (MIG) technology, which allows the GPU to be partitioned into multiple small, isolated instances. This technology provides more flexibility for users to support both deep learning training and inference workloads, but efficiently utilizing it can still be challenging. The vision of this paper is to provide a more comprehensive and practical benchmark study for MIG in order to eliminate the need for tedious manual benchmarking and tuning efforts. To achieve this vision, the paper presents MIGPerf, an open-source tool that streamlines the benchmark study for MIG. Using MIGPerf, the authors conduct a series of experiments, including deep learning training and inference characterization on MIG, GPU sharing characterization, and framework compatibility with MIG. The results of these experiments provide new insights and guidance for users to effectively employ MIG, and lay the foundation for further research on the orchestration of hybrid training and inference workloads on MIGs. The code and results are released on https://github.com/MLSysOps/MIGProfiler. This work is still in progress and more results will be published soon.
translated by 谷歌翻译
In the scenario of black-box adversarial attack, the target model's parameters are unknown, and the attacker aims to find a successful adversarial perturbation based on query feedback under a query budget. Due to the limited feedback information, existing query-based black-box attack methods often require many queries for attacking each benign example. To reduce query cost, we propose to utilize the feedback information across historical attacks, dubbed example-level adversarial transferability. Specifically, by treating the attack on each benign example as one task, we develop a meta-learning framework by training a meta-generator to produce perturbations conditioned on benign examples. When attacking a new benign example, the meta generator can be quickly fine-tuned based on the feedback information of the new task as well as a few historical attacks to produce effective perturbations. Moreover, since the meta-train procedure consumes many queries to learn a generalizable generator, we utilize model-level adversarial transferability to train the meta-generator on a white-box surrogate model, then transfer it to help the attack against the target model. The proposed framework with the two types of adversarial transferability can be naturally combined with any off-the-shelf query-based attack methods to boost their performance, which is verified by extensive experiments.
translated by 谷歌翻译
Medical image segmentation (MIS) is essential for supporting disease diagnosis and treatment effect assessment. Despite considerable advances in artificial intelligence (AI) for MIS, clinicians remain skeptical of its utility, maintaining low confidence in such black box systems, with this problem being exacerbated by low generalization for out-of-distribution (OOD) data. To move towards effective clinical utilization, we propose a foundation model named EvidenceCap, which makes the box transparent in a quantifiable way by uncertainty estimation. EvidenceCap not only makes AI visible in regions of uncertainty and OOD data, but also enhances the reliability, robustness, and computational efficiency of MIS. Uncertainty is modeled explicitly through subjective logic theory to gather strong evidence from features. We show the effectiveness of EvidenceCap in three segmentation datasets and apply it to the clinic. Our work sheds light on clinical safe applications and explainable AI, and can contribute towards trustworthiness in the medical domain.
translated by 谷歌翻译
Depression is a leading cause of death worldwide, and the diagnosis of depression is nontrivial. Multimodal learning is a popular solution for automatic diagnosis of depression, and the existing works suffer two main drawbacks: 1) the high-order interactions between different modalities can not be well exploited; and 2) interpretability of the models are weak. To remedy these drawbacks, we propose a multimodal multi-order factor fusion (MMFF) method. Our method can well exploit the high-order interactions between different modalities by extracting and assembling modality factors under the guide of a shared latent proxy. We conduct extensive experiments on two recent and popular datasets, E-DAIC-WOZ and CMDC, and the results show that our method achieve significantly better performance compared with other existing approaches. Besides, by analyzing the process of factor assembly, our model can intuitively show the contribution of each factor. This helps us understand the fusion mechanism.
translated by 谷歌翻译
In optimization-based approaches to inverse problems and to statistical estimation, it is common to augment the objective with a regularizer to address challenges associated with ill-posedness. The choice of a suitable regularizer is typically driven by prior domain information and computational considerations. Convex regularizers are attractive as they are endowed with certificates of optimality as well as the toolkit of convex analysis, but exhibit a computational scaling that makes them ill-suited beyond moderate-sized problem instances. On the other hand, nonconvex regularizers can often be deployed at scale, but do not enjoy the certification properties associated with convex regularizers. In this paper, we seek a systematic understanding of the power and the limitations of convex regularization by investigating the following questions: Given a distribution, what are the optimal regularizers, both convex and nonconvex, for data drawn from the distribution? What properties of a data source govern whether it is amenable to convex regularization? We address these questions for the class of continuous and positively homogenous regularizers for which convex and nonconvex regularizers correspond, respectively, to convex bodies and star bodies. By leveraging dual Brunn-Minkowski theory, we show that a radial function derived from a data distribution is the key quantity for identifying optimal regularizers and for assessing the amenability of a data source to convex regularization. Using tools such as $\Gamma$-convergence, we show that our results are robust in the sense that the optimal regularizers for a sample drawn from a distribution converge to their population counterparts as the sample size grows large. Finally, we give generalization guarantees that recover previous results for polyhedral regularizers (i.e., dictionary learning) and lead to new ones for semidefinite regularizers.
translated by 谷歌翻译
Creating an essay based on a few given topics is a challenging NLP task. Although several effective methods for this problem, topic-to-essay generation, have appeared recently, there is still much room for improvement, especially in terms of the coverage of the given topics and the coherence of the generated text. In this paper, we propose a novel approach called TegFormer which utilizes the Transformer architecture where the encoder is enriched with domain-specific contexts while the decoder is enhanced by a large-scale pre-trained language model. Specifically, a \emph{Topic-Extension} layer capturing the interaction between the given topics and their domain-specific contexts is plugged into the encoder. Since the given topics are usually concise and sparse, such an additional layer can bring more topic-related semantics in to facilitate the subsequent natural language generation. Moreover, an \emph{Embedding-Fusion} module that combines the domain-specific word embeddings learnt from the given corpus and the general-purpose word embeddings provided by a GPT-2 model pre-trained on massive text data is integrated into the decoder. Since GPT-2 is at a much larger scale, it contains a lot more implicit linguistic knowledge which would help the decoder to produce more grammatical and readable text. Extensive experiments have shown that the pieces of text generated by TegFormer have better topic coverage and higher text coherence than those from SOTA topic-to-essay techniques, according to automatic and human evaluations. As revealed by ablation studies, both the Topic-Extension layer and the Embedding-Fusion module contribute substantially to TegFormer's performance advantage.
translated by 谷歌翻译
Natural Language Processing (NLP) has been revolutionized by the use of Pre-trained Language Models (PLMs) such as BERT. Despite setting new records in nearly every NLP task, PLMs still face a number of challenges including poor interpretability, weak reasoning capability, and the need for a lot of expensive annotated data when applied to downstream tasks. By integrating external knowledge into PLMs, \textit{\underline{K}nowledge-\underline{E}nhanced \underline{P}re-trained \underline{L}anguage \underline{M}odels} (KEPLMs) have the potential to overcome the above-mentioned limitations. In this paper, we examine KEPLMs systematically through a series of studies. Specifically, we outline the common types and different formats of knowledge to be integrated into KEPLMs, detail the existing methods for building and evaluating KEPLMS, present the applications of KEPLMs in downstream tasks, and discuss the future research directions. Researchers will benefit from this survey by gaining a quick and comprehensive overview of the latest developments in this field.
translated by 谷歌翻译