Energy consumption in buildings, both residential and commercial, accounts for approximately 40% of all energy usage in the U.S., and similar numbers are being reported from countries around the world. This significant amount of energy is used to maintain a comfortable, secure, and productive environment for the occupants. So, it is crucial that the energy consumption in buildings must be optimized, all the while maintaining satisfactory levels of occupant comfort, health, and safety. Recently, Machine Learning has been proven to be an invaluable tool in deriving important insights from data and optimizing various systems. In this work, we review the ways in which machine learning has been leveraged to make buildings smart and energy-efficient. For the convenience of readers, we provide a brief introduction of several machine learning paradigms and the components and functioning of each smart building system we cover. Finally, we discuss challenges faced while implementing machine learning algorithms in smart buildings and provide future avenues for research at the intersection of smart buildings and machine learning.
translated by 谷歌翻译
It is known that neural networks have the problem of being over-confident when directly using the output label distribution to generate uncertainty measures. Existing methods mainly resolve this issue by retraining the entire model to impose the uncertainty quantification capability so that the learned model can achieve desired performance in accuracy and uncertainty prediction simultaneously. However, training the model from scratch is computationally expensive and may not be feasible in many situations. In this work, we consider a more practical post-hoc uncertainty learning setting, where a well-trained base model is given, and we focus on the uncertainty quantification task at the second stage of training. We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities, which is effective and computationally efficient. Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties and easily adapt to different application settings, including out-of-domain data detection, misclassification detection, and trustworthy transfer learning. We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications over multiple representative image classification benchmarks.
translated by 谷歌翻译
Smart Sensing提供了一种更轻松,方便的数据驱动机制,用于在建筑环境中监视和控制。建筑环境中生成的数据对隐私敏感且有限。 Federated Learning是一个新兴的范式,可在多个参与者之间提供隐私的合作,以进行模型培训,而无需共享私人和有限的数据。参与者数据集中的嘈杂标签降低了表现,并增加了联合学习收敛的通信巡回赛数量。如此大的沟通回合需要更多的时间和精力来训练模型。在本文中,我们提出了一种联合学习方法,以抑制每个参与者数据集中嘈杂标签的不平等分布。该方法首先估计每个参与者数据集的噪声比,并使用服务器数据集将噪声比归一化。所提出的方法可以处理服务器数据集中的偏差,并最大程度地减少其对参与者数据集的影响。接下来,我们使用每个参与者的归一化噪声比和影响来计算参与者的最佳加权贡献。我们进一步得出表达式,以估计提出方法收敛所需的通信回合数。最后,实验结果证明了拟议方法对现有技术的有效性,从交流回合和在建筑环境中实现了性能。
translated by 谷歌翻译
随着人们的生活水平的增强和通信技术的快速增长,住宅环境变得聪明且连接,从而大大增加了整体能源消耗。由于家用电器是主要的能源消费者,因此他们的认可对于避免无人看管的用途至关重要,从而节省了能源并使智能环境更可持续。传统上,通过从客户(消费者)收集通过智能插头记录的电力消耗数据,在中央服务器(服务提供商)中培训设备识别模型,从而导致隐私漏洞。除此之外,当设备连接到非指定的智能插头时,数据易受嘈杂的标签。在共同解决这些问题的同时,我们提出了一种新型的联合学习方法来识别设备识别,即Fedar+,即使使用错误的培训数据,也可以以隐私的方式跨客户进行分散的模型培训。 Fedar+引入了一种自适应噪声处理方法,本质上是包含权重和标签分布的关节损耗函数,以增强设备识别模型的能力,以抵制嘈杂标签。通过将智能插头部署在公寓大楼中,我们收集了一个标记的数据集,该数据集以及两个现有数据集可用于评估Fedar+的性能。实验结果表明,我们的方法可以有效地处理高达$ 30 \%$的嘈杂标签,同时以较大的准确性优于先前的解决方案。
translated by 谷歌翻译
培训生成模型捕获数据的丰富语义并解释由此类模型编码的潜在表示,这是无监督学习的非常重要的问题。在这项工作中,我们提供了一种简单的算法,该算法依赖于对预训练的生成自动编码器的潜在代码进行扰动实验,以发现生成模型暗示的因果图。我们利用预训练的属性分类器并执行扰动实验,以检查给定潜在变量对属性子集的影响。鉴于此,我们表明人们可以拟合有效的因果图,该图形在被视为外源变量的潜在代码和被视为观察到的变量的属性之间建模结构方程模型。一个有趣的方面是,单个潜在变量控制属性的多个重叠子集,与试图实现完全独立性的常规方法不同。使用在肽序列数据集上训练的基于RNN的预先训练的生成自动编码器,我们证明了从各种属性和潜在代码之间的算法中学习的因果图可用于预测看不见的序列的特定属性。我们比较了对所有可用属性训练的预测模型,或者仅在Markov毯子中仅培训的模型,并从经验上表明,在无监督和监督的制度中,通常使用依赖Markov blanket属性的预测变量,以确保更好的分布序列。 。
translated by 谷歌翻译
如果对准确的预测的置信度不足,则选择性回归允许弃权。通常,通过允许拒绝选项,人们期望回归模型的性能会以减少覆盖范围的成本(即预测较少的样本)的成本提高。但是,正如我们所显示的,在某些情况下,少数子组的性能可以减少,同时我们减少覆盖范围,因此选择性回归可以放大不同敏感亚组之间的差异。在这些差异的推动下,我们提出了新的公平标准,用于选择性回归,要求每个子组的性能在覆盖范围内降低。我们证明,如果特征表示满足充分性标准或为均值和方差进行校准,则与所提出的公平标准相比。此外,我们介绍了两种方法,以减轻子组之间的性能差异:(a)通过在高斯假设下正规化有条件相互信息的上限,以及(b)通过对条件均值和条件方差预测的对比度损失正规。这些方法的有效性已在合成和现实世界数据集上证明。
translated by 谷歌翻译
Machine Translation (MT) system generally aims at automatic representation of source language into target language retaining the originality of context using various Natural Language Processing (NLP) techniques. Among various NLP methods, Statistical Machine Translation(SMT). SMT uses probabilistic and statistical techniques to analyze information and conversion. This paper canvasses about the development of bilingual SMT models for translating English to fifteen low-resource Indian Languages (ILs) and vice versa. At the outset, all 15 languages are briefed with a short description related to our experimental need. Further, a detailed analysis of Samanantar and OPUS dataset for model building, along with standard benchmark dataset (Flores-200) for fine-tuning and testing, is done as a part of our experiment. Different preprocessing approaches are proposed in this paper to handle the noise of the dataset. To create the system, MOSES open-source SMT toolkit is explored. Distance reordering is utilized with the aim to understand the rules of grammar and context-dependent adjustments through a phrase reordering categorization framework. In our experiment, the quality of the translation is evaluated using standard metrics such as BLEU, METEOR, and RIBES
translated by 谷歌翻译
The devastation caused by the coronavirus pandemic makes it imperative to design automated techniques for a fast and accurate detection. We propose a novel non-invasive tool, using deep learning and imaging, for delineating COVID-19 infection in lungs. The Ensembling Attention-based Multi-scaled Convolution network (EAMC), employing Leave-One-Patient-Out (LOPO) training, exhibits high sensitivity and precision in outlining infected regions along with assessment of severity. The Attention module combines contextual with local information, at multiple scales, for accurate segmentation. Ensemble learning integrates heterogeneity of decision through different base classifiers. The superiority of EAMC, even with severe class imbalance, is established through comparison with existing state-of-the-art learning models over four publicly-available COVID-19 datasets. The results are suggestive of the relevance of deep learning in providing assistive intelligence to medical practitioners, when they are overburdened with patients as in pandemics. Its clinical significance lies in its unprecedented scope in providing low-cost decision-making for patients lacking specialized healthcare at remote locations.
translated by 谷歌翻译
Neural Architecture Search (NAS) is an automatic technique that can search for well-performed architectures for a specific task. Although NAS surpasses human-designed architecture in many fields, the high computational cost of architecture evaluation it requires hinders its development. A feasible solution is to directly evaluate some metrics in the initial stage of the architecture without any training. NAS without training (WOT) score is such a metric, which estimates the final trained accuracy of the architecture through the ability to distinguish different inputs in the activation layer. However, WOT score is not an atomic metric, meaning that it does not represent a fundamental indicator of the architecture. The contributions of this paper are in three folds. First, we decouple WOT into two atomic metrics which represent the distinguishing ability of the network and the number of activation units, and explore better combination rules named (Distinguishing Activation Score) DAS. We prove the correctness of decoupling theoretically and confirmed the effectiveness of the rules experimentally. Second, in order to improve the prediction accuracy of DAS to meet practical search requirements, we propose a fast training strategy. When DAS is used in combination with the fast training strategy, it yields more improvements. Third, we propose a dataset called Darts-training-bench (DTB), which fills the gap that no training states of architecture in existing datasets. Our proposed method has 1.04$\times$ - 1.56$\times$ improvements on NAS-Bench-101, Network Design Spaces, and the proposed DTB.
translated by 谷歌翻译
Dense prediction tasks such as segmentation and detection of pathological entities hold crucial clinical value in the digital pathology workflow. However, obtaining dense annotations on large cohorts is usually tedious and expensive. Contrastive learning (CL) is thus often employed to leverage large volumes of unlabeled data to pre-train the backbone network. To boost CL for dense prediction, some studies have proposed variations of dense matching objectives in pre-training. However, our analysis shows that employing existing dense matching strategies on histopathology images enforces invariance among incorrect pairs of dense features and, thus, is imprecise. To address this, we propose a precise location-based matching mechanism that utilizes the overlapping information between geometric transformations to precisely match regions in two augmentations. Extensive experiments on two pretraining datasets (TCGA-BRCA, NCT-CRC-HE) and three downstream datasets (GlaS, CRAG, BCSS) highlight the superiority of our method in semantic and instance segmentation tasks. Our method outperforms previous dense matching methods by up to 7.2 % in average precision for detection and 5.6 % in average precision for instance segmentation tasks. Additionally, by using our matching mechanism in the three popular contrastive learning frameworks, MoCo-v2, VICRegL and ConCL, the average precision in detection is improved by 0.7 % to 5.2 % and the average precision in segmentation is improved by 0.7 % to 4.0 %, demonstrating its generalizability.
translated by 谷歌翻译