It is known that neural networks have the problem of being over-confident when directly using the output label distribution to generate uncertainty measures. Existing methods mainly resolve this issue by retraining the entire model to impose the uncertainty quantification capability so that the learned model can achieve desired performance in accuracy and uncertainty prediction simultaneously. However, training the model from scratch is computationally expensive and may not be feasible in many situations. In this work, we consider a more practical post-hoc uncertainty learning setting, where a well-trained base model is given, and we focus on the uncertainty quantification task at the second stage of training. We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities, which is effective and computationally efficient. Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties and easily adapt to different application settings, including out-of-domain data detection, misclassification detection, and trustworthy transfer learning. We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications over multiple representative image classification benchmarks.
translated by 谷歌翻译
Estimating how uncertain an AI system is in its predictions is important to improve the safety of such systems. Uncertainty in predictive can result from uncertainty in model parameters, irreducible data uncertainty and uncertainty due to distributional mismatch between the test and training data distributions. Different actions might be taken depending on the source of the uncertainty so it is important to be able to distinguish between them. Recently, baseline tasks and metrics have been defined and several practical methods to estimate uncertainty developed. These methods, however, attempt to model uncertainty due to distributional mismatch either implicitly through model uncertainty or as data uncertainty. This work proposes a new framework for modeling predictive uncertainty called Prior Networks (PNs) which explicitly models distributional uncertainty. PNs do this by parameterizing a prior distribution over predictive distributions. This work focuses on uncertainty for classification and evaluates PNs on the tasks of identifying out-of-distribution (OOD) samples and detecting misclassification on the MNIST and CIFAR-10 datasets, where they are found to outperform previous methods. Experiments on synthetic and MNIST data show that unlike previous non-Bayesian methods PNs are able to distinguish between data and distributional uncertainty.
translated by 谷歌翻译
随着我们远离数据,预测不确定性应该增加,因为各种各样的解释与鲜为人知的信息一致。我们引入了远距离感知的先验(DAP)校准,这是一种纠正训练域之外贝叶斯深度学习模型过度自信的方法。我们将DAPS定义为模型参数的先验分布,该模型参数取决于输入,通过其与训练集的距离度量。DAP校准对后推理方法不可知,可以作为后处理步骤进行。我们证明了其在各种分类和回归问题中对几个基线的有效性,包括旨在测试远离数据的预测分布质量的基准。
translated by 谷歌翻译
独立训练的神经网络的集合是一种最新的方法,可以在深度学习中估算预测性不确定性,并且可以通过三角洲函数的混合物解释为后验分布的近似值。合奏的培训依赖于损失景观的非跨性别性和其单个成员的随机初始化,从而使后近似不受控制。本文提出了一种解决此限制的新颖和原则性的方法,最大程度地减少了函数空间中真实后验和内核密度估计器(KDE)之间的$ f $ divergence。我们从组合的角度分析了这一目标,并表明它在任何$ f $的混合组件方面都是supporular。随后,我们考虑了贪婪合奏结构的问题。从负$ f $ didivergence上的边际增益来量化后近似的改善,通过将新组件添加到KDE中得出,我们得出了集合方法的新型多样性项。我们的方法的性能在计算机视觉的分布外检测基准测试中得到了证明,该基准在多个数据集中训练的一系列架构中。我们方法的源代码可在https://github.com/oulu-imeds/greedy_ensembles_training上公开获得。
translated by 谷歌翻译
最近出现了一系列用于估计具有单个正向通行证的深神经网络中的认知不确定性的新方法,最近已成为贝叶斯神经网络的有效替代方法。在信息性表示的前提下,这些确定性不确定性方法(DUM)在检测到分布(OOD)数据的同时在推理时添加可忽略的计算成本时实现了强大的性能。但是,目前尚不清楚dums是否经过校准,可以无缝地扩展到现实世界的应用 - 这都是其实际部署的先决条件。为此,我们首先提供了DUMS的分类法,并在连续分配转移下评估其校准。然后,我们将它们扩展到语义分割。我们发现,尽管DUMS尺度到现实的视觉任务并在OOD检测方面表现良好,但当前方法的实用性受到分配变化下的校准不良而破坏的。
translated by 谷歌翻译
变形自身偏移(VAES)是具有来自深神经网络架构和贝叶斯方法的丰富代表功能的有影响力的生成模型。然而,VAE模型具有比分布(ID)输入的分配方式分配更高的可能性较高的可能性。为了解决这个问题,认为可靠的不确定性估计是对对OOC投入的深入了解至关重要。在这项研究中,我们提出了一种改进的噪声对比之前(INCP),以便能够集成到VAE的编码器中,称为INCPVAE。INCP是可扩展,可培训和与VAE兼容的,它还采用了来自INCP的优点进行不确定性估计。各种数据集的实验表明,与标准VAE相比,我们的模型在OOD数据的不确定性估计方面是优越的,并且在异常检测任务中是强大的。INCPVAE模型获得了可靠的输入不确定性估算,并解决了VAE模型中的ood问题。
translated by 谷歌翻译
在图像分类中,在检测分布(OOD)数据时发生了许多发展。但是,大多数OOD检测方法是在一组标准数据集上评估的,该数据集与培训数据任意不同。没有明确的定义``好的''ood数据集。此外,最先进的OOD检测方法已经在这些标准基准上取得了几乎完美的结果。在本文中,我们定义了2类OOD数据使用与分布(ID)数据的感知/视觉和语义相似性的微妙概念。我们将附近的OOD样本定义为感知上相似但语义上与ID样本的不同,并将样本转移为视觉上不同但在语义上与ID相似的点数据。然后,我们提出了一个基于GAN的框架,用于从这两个类别中生成OOD样品,给定一个ID数据集。通过有关MNIST,CIFAR-10/100和Imagenet的广泛实验,我们表明A)在常规基准上表现出色的ART OOD检测方法对我们提出的基准测试的稳健性明显较小。 N基准测试,反之亦然,因此表明甚至可能不需要单独的OOD集来可靠地评估OOD检测中的性能。
translated by 谷歌翻译
我们表明,著名的混音的有效性[Zhang等,2018],如果而不是将其用作唯一的学习目标,就可以进一步改善它,而是将其用作标准跨侧面损失的附加规则器。这种简单的变化不仅提供了太大的准确性,而且在大多数情况下,在各种形式的协变量转移和分布外检测实验下,在大多数情况下,混合量的预测不确定性估计质量都显着提高了。实际上,我们观察到混合物在检测出分布样本时可能会产生大量退化的性能,因为我们在经验上表现出来,因为它倾向于学习在整个过程中表现出高渗透率的模型。很难区分分布样本与近分离样本。为了显示我们的方法的功效(RegMixup),我们在视觉数据集(Imagenet&Cifar-10/100)上提供了详尽的分析和实验,并将其与最新方法进行比较,以进行可靠的不确定性估计。
translated by 谷歌翻译
超越在分销数据上的测试上,在分销(OOD)检测中最近的普及方式增加了。最近尝试分类OOD数据介绍了接近和远远检测的概念。具体而言,先前作品在检测难度方面定义了OOD数据的特征。我们建议使用两种类型的分布换档来表征ood数据的频谱:协变速和概念转移,其中协变速转移对应于样式的变化,例如噪声和概念移位表示语义的变化。该表征揭示了对每种类型的敏感性对OOD数据的检测和置信校准是重要的。因此,我们调查了捕获对改善它们的每种类型数据集偏移和方法的敏感性的得分功能。为此,我们从理论上得出了两个分数函数,用于ood检测,协变速分数和概念换档分数,基于对均分数的kl分解,并提出了一种几何启发方法(几何奥丁)来改善ood检测在两个班次下,只有分发数据。另外,所提出的方法自然地导致表现力的后HOC校准函数,其在分配和分发数据中产生最先进的校准性能。我们是第一个提出一种跨越检测和校准以及不同类型的班次工作的方法的方法。查看https://sites.google.com/view/geometric-decomposition的project页面。
translated by 谷歌翻译
在深神经网络中量化预测性不确定性的流行方法通常涉及一组权重或模型,例如通过合并或蒙特卡罗辍学。这些技术通常必须产生开销,必须培训多种模型实例,或者不会产生非常多样化的预测。该调查旨在熟悉基于证据深度学习的概念的替代类模型的读者:对于不熟悉的数据,他们承认“他们不知道的内容”并返回到先前的信仰。此外,它们允许在单个模型中进行不确定性估计,并通过参数化分布分布来转发传递。该调查重新承认现有工作,重点是在分类设置中的实现。最后,我们调查了相同范例的应用到回归问题。我们还对现有的方法进行了反思,并与现有方法相比,并提供最大的核心理论成果,以便通知未来的研究。
translated by 谷歌翻译
最近,深度学习中的不确定性估计已成为提高安全至关重要应用的可靠性和鲁棒性的关键领域。尽管有许多提出的方法要么关注距离感知模型的不确定性,要么是分布式检测的不确定性,要么是针对分布校准的输入依赖性标签不确定性,但这两种类型的不确定性通常都是必要的。在这项工作中,我们提出了用于共同建模模型和数据不确定性的HETSNGP方法。我们表明,我们提出的模型在这两种类型的不确定性之间提供了有利的组合,因此在包括CIFAR-100C,ImagEnet-C和Imagenet-A在内的一些具有挑战性的分发数据集上优于基线方法。此外,我们提出了HETSNGP Ensemble,这是我们方法的结合版本,该版本还对网络参数的不确定性进行建模,并优于其他集合基线。
translated by 谷歌翻译
本文我们的目标是利用异质的温度缩放作为校准策略(OOD)检测。此处的异质性是指每个样品的最佳温度参数可能不同,而不是传统的方法对整个分布使用相同的值。为了实现这一目标,我们提出了一种称为锚定的新培训策略,可以估算每个样品的适当温度值,从而导致几个基准的最新OOD检测性能。使用NTK理论,我们表明该温度函数估计与分类器的认知不确定性紧密相关,这解释了其行为。与某些表现最佳的OOD检测方法相反,我们的方法不需要暴露于其他离群数据集,自定义校准目标或模型结合。通过具有不同OOD检测设置的经验研究 - 远处,OOD附近和语义相干OOD - 我们建立了一种高效的OOD检测方法。可以在此处访问代码和模型-https://github.com/rushilanirudh/amp
translated by 谷歌翻译
We present an approach to quantifying both aleatoric and epistemic uncertainty for deep neural networks in image classification, based on generative adversarial networks (GANs). While most works in the literature that use GANs to generate out-of-distribution (OoD) examples only focus on the evaluation of OoD detection, we present a GAN based approach to learn a classifier that produces proper uncertainties for OoD examples as well as for false positives (FPs). Instead of shielding the entire in-distribution data with GAN generated OoD examples which is state-of-the-art, we shield each class separately with out-of-class examples generated by a conditional GAN and complement this with a one-vs-all image classifier. In our experiments, in particular on CIFAR10, CIFAR100 and Tiny ImageNet, we improve over the OoD detection and FP detection performance of state-of-the-art GAN-training based classifiers. Furthermore, we also find that the generated GAN examples do not significantly affect the calibration error of our classifier and result in a significant gain in model accuracy.
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
Accurate uncertainty quantification is a major challenge in deep learning, as neural networks can make overconfident errors and assign high confidence predictions to out-of-distribution (OOD) inputs. The most popular approaches to estimate predictive uncertainty in deep learning are methods that combine predictions from multiple neural networks, such as Bayesian neural networks (BNNs) and deep ensembles. However their practicality in real-time, industrial-scale applications are limited due to the high memory and computational cost. Furthermore, ensembles and BNNs do not necessarily fix all the issues with the underlying member networks. In this work, we study principled approaches to improve uncertainty property of a single network, based on a single, deterministic representation. By formalizing the uncertainty quantification as a minimax learning problem, we first identify distance awareness, i.e., the model's ability to quantify the distance of a testing example from the training data, as a necessary condition for a DNN to achieve high-quality (i.e., minimax optimal) uncertainty estimation. We then propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs with two simple changes: (1) applying spectral normalization to hidden weights to enforce bi-Lipschitz smoothness in representations and (2) replacing the last output layer with a Gaussian process layer. On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection. Furthermore, SNGP provides complementary benefits to popular techniques such as deep ensembles and data augmentation, making it a simple and scalable building block for probabilistic deep learning. Code is open-sourced at https://github.com/google/uncertainty-baselines
translated by 谷歌翻译
引导是机器学习和统计信息中的集合和不确定性量化的主要工具。但是,由于其多种培训和重采样的性质,自动启动深度神经网络是计算繁重的;因此,在不确定性估计和相关任务的实际应用中具有困难。为了克服这种计算瓶颈,我们提出了一种名为“Emph {神经盗版的}(Neuboots)的新方法,这将通过单一模型训练来生成引导的神经网络。 Neuboots将引导权重注射到骨干网络的高级特征层中,并输出目标的引导预测,而无需额外的参数和从头开始的重复计算。我们将Neuboots应用于与不确定量化相关的各种机器学习任务,包括图像分类和语义分割,主动学习和分发外样品的预测校准。我们的经验结果表明,Neuboots在较低的计算成本下优于其他基于袋的方法,而不会失去自动启动的有效性。
translated by 谷歌翻译
由于其在现实世界应用程序中部署机器学习模型中的重要性,因此无法分布(OOD)检测最近受到了机器学习社区的关注。在本文中,我们通过对特征的分布进行建模,提出了一种不确定性量化方法。我们进一步结合了一种有效的合奏机制,即批处理 - 构造批处理的随机神经网络(BE-SNN)并克服特征崩溃问题。我们将提出的BE-SNN的性能与其他最先进的方法进行了比较,并表明BE-SNN在几个OOD基准上产生了卓越的性能,例如两个漫画数据集,FashionMnist,FashionMnist vs Mnist Dataset,FashionMnistvs notmnist数据集和CIFAR10 vs SVHN数据集。
translated by 谷歌翻译
不确定性的量化对于采用机器学习至关重要,尤其是拒绝分布(OOD)数据回到人类专家进行审查。然而,进步一直很慢,因为计算效率和不确定性估计质量之间必须达到平衡。因此,许多人使用神经网络或蒙特卡洛辍学的深层集合来进行相对最小的计算和记忆时合理的不确定性估计。出乎意料的是,当我们专注于$ \ leq 1 \%$ frese-falds正率(FPR)的现实世界中的约束时,先前的方法无法可靠地检测到OOD样本。值得注意的是,即使高斯随机噪声也无法触发这些流行的OOD技术。我们通过设计一种简单的对抗训练计划来帮助缓解这个问题,该计划结合了辍学合奏所预测的认知不确定性的攻击。我们证明了这种方法可以改善标准数据(即未经对抗制作)上的OOD检测性能,并将标准化的部分AUC从近乎随机的猜测性能提高到$ \ geq 0.75 $。
translated by 谷歌翻译
已知现代深度神经网络模型将错误地将分布式(OOD)测试数据分类为具有很高信心的分数(ID)培训课程之一。这可能会对关键安全应用产生灾难性的后果。一种流行的缓解策略是训练单独的分类器,该分类器可以在测试时间检测此类OOD样本。在大多数实际设置中,在火车时间尚不清楚OOD的示例,因此,一个关键问题是:如何使用合成OOD样品来增加ID数据以训练这样的OOD检测器?在本文中,我们为称为CNC的OOD数据增强提出了一种新颖的复合腐败技术。 CNC的主要优点之一是,除了培训集外,它不需要任何固定数据。此外,与当前的最新技术(SOTA)技术不同,CNC不需要在测试时间进行反向传播或结合,从而使我们的方法在推断时更快。我们与过去4年中主要会议的20种方法进行了广泛的比较,表明,在OOD检测准确性和推理时间方面,使用基于CNC的数据增强训练的模型都胜过SOTA。我们包括详细的事后分析,以研究我们方法成功的原因,并确定CNC样本的较高相对熵和多样性是可能的原因。我们还通过对二维数据集进行零件分解分析提供理论见解,以揭示(视觉和定量),我们的方法导致ID类别周围的边界更紧密,从而更好地检测了OOD样品。源代码链接:https://github.com/cnc-ood
translated by 谷歌翻译
检测分销(OOD)输入是安全部署现实世界中的机器学习模型的中央挑战。以前的方法通常依赖于从过度分辨率的重量空间衍生的评分,同时在很大程度上忽略了稀疏的作用。在本文中,我们揭示了重要的见解,即依赖对不重要的权重和单位可以直接归因于“ood检测的脆性”。为了减轻这个问题,我们提出了一个基于稀疏的oo ood检测框架被称为骰子。我们的关键思想是基于贡献的衡量标准进行排序,并选择性地使用最突出的重量来导出OOD检测的输出。我们提供了实证和理论洞察力,表征和解释了骰子改善的机制。通过修剪嘈杂的信号,骰子可否降低OOD数据的输出方差,从而导致输出分布和更强的ID数据可分离。骰子表现出色,与先前的最佳方法相比,将FPR95减少至多24.69%。
translated by 谷歌翻译