We propose a new neural network design paradigm Reversible Column Network (RevCol). The main body of RevCol is composed of multiple copies of subnetworks, named columns respectively, between which multi-level reversible connections are employed. Such architectural scheme attributes RevCol very different behavior from conventional networks: during forward propagation, features in RevCol are learned to be gradually disentangled when passing through each column, whose total information is maintained rather than compressed or discarded as other network does. Our experiments suggest that CNN-style RevCol models can achieve very competitive performances on multiple computer vision tasks such as image classification, object detection and semantic segmentation, especially with large parameter budget and large dataset. For example, after ImageNet-22K pre-training, RevCol-XL obtains 88.2% ImageNet-1K accuracy. Given more pre-training data, our largest model RevCol-H reaches 90.0% on ImageNet-1K, 63.8% APbox on COCO detection minival set, 61.0% mIoU on ADE20k segmentation. To our knowledge, it is the best COCO detection and ADE20k segmentation result among pure (static) CNN models. Moreover, as a general macro architecture fashion, RevCol can also be introduced into transformers or other neural networks, which is demonstrated to improve the performances in both computer vision and NLP tasks. We release code and models at https://github.com/megvii-research/RevCol
translated by 谷歌翻译
Bayesian optimization (BO), while proved highly effective for many black-box function optimization tasks, requires practitioners to carefully select priors that well model their functions of interest. Rather than specifying by hand, researchers have investigated transfer learning based methods to automatically learn the priors, e.g. multi-task BO (Swersky et al., 2013), few-shot BO (Wistuba and Grabocka, 2021) and HyperBO (Wang et al., 2022). However, those prior learning methods typically assume that the input domains are the same for all tasks, weakening their ability to use observations on functions with different domains or generalize the learned priors to BO on different search spaces. In this work, we present HyperBO+: a pre-training approach for hierarchical Gaussian processes that enables the same prior to work universally for Bayesian optimization on functions with different domains. We propose a two-step pre-training method and analyze its appealing asymptotic properties and benefits to BO both theoretically and empirically. On real-world hyperparameter tuning tasks that involve multiple search spaces, we demonstrate that HyperBO+ is able to generalize to unseen search spaces and achieves lower regrets than competitive baselines.
translated by 谷歌翻译
We consider the inverse acoustic obstacle problem for sound-soft star-shaped obstacles in two dimensions wherein the boundary of the obstacle is determined from measurements of the scattered field at a collection of receivers outside the object. One of the standard approaches for solving this problem is to reformulate it as an optimization problem: finding the boundary of the domain that minimizes the $L^2$ distance between computed values of the scattered field and the given measurement data. The optimization problem is computationally challenging since the local set of convexity shrinks with increasing frequency and results in an increasing number of local minima in the vicinity of the true solution. In many practical experimental settings, low frequency measurements are unavailable due to limitations of the experimental setup or the sensors used for measurement. Thus, obtaining a good initial guess for the optimization problem plays a vital role in this environment. We present a neural network warm-start approach for solving the inverse scattering problem, where an initial guess for the optimization problem is obtained using a trained neural network. We demonstrate the effectiveness of our method with several numerical examples. For high frequency problems, this approach outperforms traditional iterative methods such as Gauss-Newton initialized without any prior (i.e., initialized using a unit circle), or initialized using the solution of a direct method such as the linear sampling method. The algorithm remains robust to noise in the scattered field measurements and also converges to the true solution for limited aperture data. However, the number of training samples required to train the neural network scales exponentially in frequency and the complexity of the obstacles considered. We conclude with a discussion of this phenomenon and potential directions for future research.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Our work targets at searching feasible adversarial perturbation to attack a classifier with high-dimensional categorical inputs in a domain-agnostic setting. This is intrinsically an NP-hard knapsack problem where the exploration space becomes explosively larger as the feature dimension increases. Without the help of domain knowledge, solving this problem via heuristic method, such as Branch-and-Bound, suffers from exponential complexity, yet can bring arbitrarily bad attack results. We address the challenge via the lens of multi-armed bandit based combinatorial search. Our proposed method, namely FEAT, treats modifying each categorical feature as pulling an arm in multi-armed bandit programming. Our objective is to achieve highly efficient and effective attack using an Orthogonal Matching Pursuit (OMP)-enhanced Upper Confidence Bound (UCB) exploration strategy. Our theoretical analysis bounding the regret gap of FEAT guarantees its practical attack performance. In empirical analysis, we compare FEAT with other state-of-the-art domain-agnostic attack methods over various real-world categorical data sets of different applications. Substantial experimental observations confirm the expected efficiency and attack effectiveness of FEAT applied in different application scenarios. Our work further hints the applicability of FEAT for assessing the adversarial vulnerability of classification systems with high-dimensional categorical inputs.
translated by 谷歌翻译
The geographically weighted regression (GWR) is an essential tool for estimating the spatial variation of relationships between dependent and independent variables in geographical contexts. However, GWR suffers from the problem that classical linear regressions, which compose the GWR model, are more prone to be underfitting, especially for significant volume and complex nonlinear data, causing inferior comparative performance. Nevertheless, some advanced models, such as the decision tree and the support vector machine, can learn features from complex data more effectively while they cannot provide explainable quantification for the spatial variation of localized relationships. To address the above issues, we propose a geographically gradient boosting weighted regression model, GWRBoost, that applies the localized additive model and gradient boosting optimization method to alleviate underfitting problems and retains explainable quantification capability for spatially-varying relationships between geographically located variables. Furthermore, we formulate the computation method of the Akaike information score for the proposed model to conduct the comparative analysis with the classic GWR algorithm. Simulation experiments and the empirical case study are applied to prove the efficient performance and practical value of GWRBoost. The results show that our proposed model can reduce the RMSE by 18.3\% in parameter estimation accuracy and AICc by 67.3\% in the goodness of fit.
translated by 谷歌翻译
Generalist models, which are capable of performing diverse multi-modal tasks in a task-agnostic way within a single model, have been explored recently. Being, hopefully, an alternative to approaching general-purpose AI, existing generalist models are still at an early stage, where modality and task coverage is limited. To empower multi-modal task-scaling and speed up this line of research, we release a generalist model learning system, OFASys, built on top of a declarative task interface named multi-modal instruction. At the core of OFASys is the idea of decoupling multi-modal task representations from the underlying model implementations. In OFASys, a task involving multiple modalities can be defined declaratively even with just a single line of code. The system automatically generates task plans from such instructions for training and inference. It also facilitates multi-task training for diverse multi-modal workloads. As a starting point, we provide presets of 7 different modalities and 23 highly-diverse example tasks in OFASys, with which we also develop a first-in-kind, single model, OFA+, that can handle text, image, speech, video, and motion data. The single OFA+ model achieves 95% performance in average with only 16% parameters of 15 task-finetuned models, showcasing the performance reliability of multi-modal task-scaling provided by OFASys. Available at https://github.com/OFA-Sys/OFASys
translated by 谷歌翻译
The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.
translated by 谷歌翻译
Transformers are widely used in NLP tasks. However, current approaches to leveraging transformers to understand language expose one weak spot: Number understanding. In some scenarios, numbers frequently occur, especially in semi-structured data like tables. But current approaches to rich-number tasks with transformer-based language models abandon or lose some of the numeracy information - e.g., breaking numbers into sub-word tokens - which leads to many number-related errors. In this paper, we propose the LUNA framework which improves the numerical reasoning and calculation capabilities of transformer-based language models. With the number plugin of NumTok and NumBed, LUNA represents each number as a whole to model input. With number pre-training, including regression loss and model distillation, LUNA bridges the gap between number and vocabulary embeddings. To the best of our knowledge, this is the first work that explicitly injects numeracy capability into language models using Number Plugins. Besides evaluating toy models on toy tasks, we evaluate LUNA on three large-scale transformer models (RoBERTa, BERT, TabBERT) over three different downstream tasks (TATQA, TabFact, CrediTrans), and observe the performances of language models are constantly improved by LUNA. The augmented models also improve the official baseline of TAT-QA (EM: 50.15 -> 59.58) and achieve SOTA performance on CrediTrans (F1 = 86.17).
translated by 谷歌翻译
Normal estimation for unstructured point clouds is an important task in 3D computer vision. Current methods achieve encouraging results by mapping local patches to normal vectors or learning local surface fitting using neural networks. However, these methods are not generalized well to unseen scenarios and are sensitive to parameter settings. To resolve these issues, we propose an implicit function to learn an angle field around the normal of each point in the spherical coordinate system, which is dubbed as Neural Angle Fields (NeAF). Instead of directly predicting the normal of an input point, we predict the angle offset between the ground truth normal and a randomly sampled query normal. This strategy pushes the network to observe more diverse samples, which leads to higher prediction accuracy in a more robust manner. To predict normals from the learned angle fields at inference time, we randomly sample query vectors in a unit spherical space and take the vectors with minimal angle values as the predicted normals. To further leverage the prior learned by NeAF, we propose to refine the predicted normal vectors by minimizing the angle offsets. The experimental results with synthetic data and real scans show significant improvements over the state-of-the-art under widely used benchmarks.
translated by 谷歌翻译