现代单细胞流量和质量细胞仪技术测量血液或组织样品中单个细胞的几种蛋白质的表达。因此,每个分析的生物样品都由数十万个多维细胞特征向量表示,这会产生高计算成本,以预测每个生物样品与机器学习模型的相关表型。如此大的固定基础性也限制了机器学习模型的可解释性,因为难以跟踪每个单个单个细胞如何影响最终预测。我们建议使用内核平均嵌入来编码每个分类生物样品的细胞景观。尽管我们最重要的目标是制作一个更透明的模型,但我们发现我们的方法与通过简单的线性分类器相比,您的方法获得了可比性或更好的精度。结果,我们的模型包含很少的参数,但仍与具有数百万参数的深度学习模型相似。与深度学习方法相反,我们模型的线性和子选择步骤使解释分类结果变得容易。分析进一步表明,我们的方法可以接受丰富的生物学解释性,以将细胞异质性与临床表型联系起来。
translated by 谷歌翻译
Compared to typical multi-sensor systems, monocular 3D object detection has attracted much attention due to its simple configuration. However, there is still a significant gap between LiDAR-based and monocular-based methods. In this paper, we find that the ill-posed nature of monocular imagery can lead to depth ambiguity. Specifically, objects with different depths can appear with the same bounding boxes and similar visual features in the 2D image. Unfortunately, the network cannot accurately distinguish different depths from such non-discriminative visual features, resulting in unstable depth training. To facilitate depth learning, we propose a simple yet effective plug-and-play module, One Bounding Box Multiple Objects (OBMO). Concretely, we add a set of suitable pseudo labels by shifting the 3D bounding box along the viewing frustum. To constrain the pseudo-3D labels to be reasonable, we carefully design two label scoring strategies to represent their quality. In contrast to the original hard depth labels, such soft pseudo labels with quality scores allow the network to learn a reasonable depth range, boosting training stability and thus improving final performance. Extensive experiments on KITTI and Waymo benchmarks show that our method significantly improves state-of-the-art monocular 3D detectors by a significant margin (The improvements under the moderate setting on KITTI validation set are $\mathbf{1.82\sim 10.91\%}$ mAP in BEV and $\mathbf{1.18\sim 9.36\%}$ mAP in 3D}. Codes have been released at https://github.com/mrsempress/OBMO.
translated by 谷歌翻译
Gait recognition, which identifies individuals based on their walking patterns, is an important biometric technique since it can be observed from a distance and does not require the subject's cooperation. Recognizing a person's gait is difficult because of the appearance variants in human silhouette sequences produced by varying viewing angles, carrying objects, and clothing. Recent research has produced a number of ways for coping with these variants. In this paper, we present the usage of inferring 3-D body shapes distilled from limited images, which are, in principle, invariant to the specified variants. Inference of 3-D shape is a difficult task, especially when only silhouettes are provided in a dataset. We provide a method for learning 3-D body inference from silhouettes by transferring knowledge from 3-D shape prior from RGB photos. We use our method on multiple existing state-of-the-art gait baselines and obtain consistent improvements for gait identification on two public datasets, CASIA-B and OUMVLP, on several variants and settings, including a new setting of novel views not seen during training.
translated by 谷歌翻译
Automatic diabetic retinopathy (DR) grading based on fundus photography has been widely explored to benefit the routine screening and early treatment. Existing researches generally focus on single-field fundus images, which have limited field of view for precise eye examinations. In clinical applications, ophthalmologists adopt two-field fundus photography as the dominating tool, where the information from each field (i.e.,macula-centric and optic disc-centric) is highly correlated and complementary, and benefits comprehensive decisions. However, automatic DR grading based on two-field fundus photography remains a challenging task due to the lack of publicly available datasets and effective fusion strategies. In this work, we first construct a new benchmark dataset (DRTiD) for DR grading, consisting of 3,100 two-field fundus images. To the best of our knowledge, it is the largest public DR dataset with diverse and high-quality two-field images. Then, we propose a novel DR grading approach, namely Cross-Field Transformer (CrossFiT), to capture the correspondence between two fields as well as the long-range spatial correlations within each field. Considering the inherent two-field geometric constraints, we particularly define aligned position embeddings to preserve relative consistent position in fundus. Besides, we perform masked cross-field attention during interaction to flter the noisy relations between fields. Extensive experiments on our DRTiD dataset and a public DeepDRiD dataset demonstrate the effectiveness of our CrossFiT network. The new dataset and the source code of CrossFiT will be publicly available at https://github.com/FDU-VTS/DRTiD.
translated by 谷歌翻译
尽管具有明显的区分靶向分布样本的能力,但深度神经网络在检测异常分布数据方面的性能差。为了解决此缺陷,最先进的解决方案选择在离群值的辅助数据集上训练深网。这些辅助离群值的各种培训标准是根据启发式直觉提出的。但是,我们发现这些直观设计的离群训练标准可能会损害分布学习,并最终导致劣等的表现。为此,我们确定了分布不兼容的三个原因:矛盾的梯度,错误的可能性和分布变化。基于我们的新理解,我们通过调整深层模型和损耗函数的顶级设计,提出一种新的分布检测方法。我们的方法通过减少对分布特征的概率特征的干扰来实现分布兼容性。在几个基准上,我们的方法不仅可以实现最新的分布检测性能,而且还提高了分布精度。
translated by 谷歌翻译
Weakly-supervised object localization aims to indicate the category as well as the scope of an object in an image given only the image-level labels. Most of the existing works are based on Class Activation Mapping (CAM) and endeavor to enlarge the discriminative area inside the activation map to perceive the whole object, yet ignore the co-occurrence confounder of the object and context (e.g., fish and water), which makes the model inspection hard to distinguish object boundaries. Besides, the use of CAM also brings a dilemma problem that the classification and localization always suffer from a performance gap and can not reach their highest accuracy simultaneously. In this paper, we propose a casual knowledge distillation method, dubbed KD-CI-CAM, to address these two under-explored issues in one go. More specifically, we tackle the co-occurrence context confounder problem via causal intervention (CI), which explores the causalities among image features, contexts, and categories to eliminate the biased object-context entanglement in the class activation maps. Based on the de-biased object feature, we additionally propose a multi-teacher causal distillation framework to balance the absorption of classification knowledge and localization knowledge during model training. Extensive experiments on several benchmarks demonstrate the effectiveness of KD-CI-CAM in learning clear object boundaries from confounding contexts and addressing the dilemma problem between classification and localization performance.
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
When robots learn reward functions using high capacity models that take raw state directly as input, they need to both learn a representation for what matters in the task -- the task ``features" -- as well as how to combine these features into a single objective. If they try to do both at once from input designed to teach the full reward function, it is easy to end up with a representation that contains spurious correlations in the data, which fails to generalize to new settings. Instead, our ultimate goal is to enable robots to identify and isolate the causal features that people actually care about and use when they represent states and behavior. Our idea is that we can tune into this representation by asking users what behaviors they consider similar: behaviors will be similar if the features that matter are similar, even if low-level behavior is different; conversely, behaviors will be different if even one of the features that matter differs. This, in turn, is what enables the robot to disambiguate between what needs to go into the representation versus what is spurious, as well as what aspects of behavior can be compressed together versus not. The notion of learning representations based on similarity has a nice parallel in contrastive learning, a self-supervised representation learning technique that maps visually similar data points to similar embeddings, where similarity is defined by a designer through data augmentation heuristics. By contrast, in order to learn the representations that people use, so we can learn their preferences and objectives, we use their definition of similarity. In simulation as well as in a user study, we show that learning through such similarity queries leads to representations that, while far from perfect, are indeed more generalizable than self-supervised and task-input alternatives.
translated by 谷歌翻译
Vision-language models (VLMs) that are pre-trained on large-scale image-text pairs have demonstrated impressive transferability on a wide range of visual tasks. Transferring knowledge from such powerful pre-trained VLMs is emerging as a promising direction for building effective video recognition models. However, the current exploration is still limited. In our opinion, the greatest charm of pre-trained vision-language models is to build a bridge between visual and textual domains. In this paper, we present a novel framework called BIKE which utilizes the cross-modal bridge to explore bidirectional knowledge: i) We propose a Video Attribute Association mechanism which leverages the Video-to-Text knowledge to generate textual auxiliary attributes to complement video recognition. ii) We also present a Temporal Concept Spotting mechanism which uses the Text-to-Video expertise to capture temporal saliency in a parameter-free manner to yield enhanced video representation. The extensive studies on popular video datasets (ie, Kinetics-400 & 600, UCF-101, HMDB-51 and ActivityNet) show that our method achieves state-of-the-art performance in most recognition scenarios, eg, general, zero-shot, and few-shot video recognition. To the best of our knowledge, our best model achieves a state-of-the-art accuracy of 88.4% on challenging Kinetics-400 with the released CLIP pre-trained model.
translated by 谷歌翻译
There is a growing interest in developing unlearnable examples (UEs) against visual privacy leaks on the Internet. UEs are training samples added with invisible but unlearnable noise, which have been found can prevent unauthorized training of machine learning models. UEs typically are generated via a bilevel optimization framework with a surrogate model to remove (minimize) errors from the original samples, and then applied to protect the data against unknown target models. However, existing UE generation methods all rely on an ideal assumption called label-consistency, where the hackers and protectors are assumed to hold the same label for a given sample. In this work, we propose and promote a more practical label-agnostic setting, where the hackers may exploit the protected data quite differently from the protectors. E.g., a m-class unlearnable dataset held by the protector may be exploited by the hacker as a n-class dataset. Existing UE generation methods are rendered ineffective in this challenging setting. To tackle this challenge, we present a novel technique called Unlearnable Clusters (UCs) to generate label-agnostic unlearnable examples with cluster-wise perturbations. Furthermore, we propose to leverage VisionandLanguage Pre-trained Models (VLPMs) like CLIP as the surrogate model to improve the transferability of the crafted UCs to diverse domains. We empirically verify the effectiveness of our proposed approach under a variety of settings with different datasets, target models, and even commercial platforms Microsoft Azure and Baidu PaddlePaddle.
translated by 谷歌翻译