Physical law learning is the ambiguous attempt at automating the derivation of governing equations with the use of machine learning techniques. The current literature focuses however solely on the development of methods to achieve this goal, and a theoretical foundation is at present missing. This paper shall thus serve as a first step to build a comprehensive theoretical framework for learning physical laws, aiming to provide reliability to according algorithms. One key problem consists in the fact that the governing equations might not be uniquely determined by the given data. We will study this problem in the common situation that a physical law is described by an ordinary or partial differential equation. For various different classes of differential equations, we provide both necessary and sufficient conditions for a function to uniquely determine the differential equation which is governing the phenomenon. We then use our results to devise numerical algorithms to determine whether a function solves a differential equation uniquely. Finally, we provide extensive numerical experiments showing that our algorithms in combination with common approaches for learning physical laws indeed allow to guarantee that a unique governing differential equation is learnt, without assuming any knowledge about the function, thereby ensuring reliability.
translated by 谷歌翻译
神经崩溃的概念是指在各种规范分类问题中经验观察到的几种新兴现象。在训练深度神经网络的终端阶段,同一类的所有示例的特征嵌入往往会崩溃为单一表示,而不同类别的特征往往会尽可能分开。通常通过简化的模型(称为无约束的特征表示)来研究神经崩溃,其中假定模型具有“无限表达性”,并且可以将每个数据点映射到任何任意表示。在这项工作中,我们提出了不受约束的功能表示的更现实的变体,该变体考虑到了网络的有限表达性。经验证据表明,嘈杂数据点的记忆导致神经崩溃的降解(扩张)。使用记忆 - 稀释(M-D)现象的模型,我们展示了一种机制,通过该机制,不同的损失导致嘈杂数据上受过训练的网络的不同性能。我们的证据揭示了为什么标签平滑性(经验观察到产生正则化效果的跨凝性的修改)导致分类任务的概括改善的原因。
translated by 谷歌翻译
这项工作提供了有关图消息传递神经网络(GMPNNS)(例如图形神经网络(GNNS))的第一个理论研究,以执行归纳性脱离分布(OOD)链接预测任务,在部署(测试)(测试))图大小比训练图大。我们首先证明了非反应界限,表明基于GMPNN获得的基于置换 - 等值的(结构)节点嵌入的链接预测变量可以随着测试图变大,可以收敛到随机猜测。然后,我们提出了一个理论上的GMPNN,该GMPNN输出结构性成对(2节点)嵌入,并证明非扰动边界表明,随着测试图的增长,这些嵌入量会收敛到连续函数的嵌入,以保留其预测链接的能力。随机图上的经验结果表明与我们的理论结果一致。
translated by 谷歌翻译
消息传递神经网络(MPNN)自从引入卷积神经网络以泛滥到图形结构的数据以来,人们的受欢迎程度急剧上升,现在被认为是解决各种以图形为中心的最先进的工具问题。我们研究图形分类和回归中MPNN的概括误差。我们假设不同类别的图是从不同的随机图模型中采样的。我们表明,当在从这种分布中采样的数据集上训练MPNN时,概括差距会增加MPNN的复杂性,并且不仅相对于训练样本的数量,而且还会减少节点的平均数量在图中。这表明,只要图形很大,具有高复杂性的MPNN如何从图形的小数据集中概括。概括结合是从均匀收敛结果得出的,该结果表明,应用于图的任何MPNN近似于该图离散的几何模型上应用的MPNN。
translated by 谷歌翻译
由于Jacot等人的著名结果,神经切线内核(NTK)被广泛用于分析过多散热性神经网络。 (2018):在无限宽度限制中,NTK在训练过程中是确定性和恒定的。但是,该结果无法解释深网的行为,因为如果深度和宽度同时无穷大,通常不会成立。在本文中,我们研究了与宽度相当的深度连接的Relu网络的NTK。我们证明NTK性质显着取决于初始化时的深度与宽度比和参数的分布。实际上,我们的结果表明,在Poole等人中确定的超参数空间中这三个阶段的重要性。 (2016年):订购,混乱和混乱的边缘(EOC)。我们在所有三个阶段中都在无限深度和宽度极限中得出NTK分散剂的精确表达式,并得出结论,NTK的可变性在EOC和混乱阶段随着深度而呈指数增长,但在有序阶段中却没有。我们还表明,深网的NTK只能在有序阶段训练期间保持恒定,并讨论NTK矩阵的结构在训练过程中如何变化。
translated by 谷歌翻译
我们提出了卡通X(卡通解释),这是一种新的模型 - 不可知解释方法,朝向图像分类器定制,并基于速率 - 失真说明(RDE)框架。自然图像大致是典型的平滑信号 - 也称为卡通图像 - 并且在小波域中倾向于稀疏。CartoonX是通过要求其解释在小波域中的稀疏来利用这一点的第一种解释方法,从而提取图像的\ emph {相关的片状平滑}部分而不是相关的像素稀疏区域。我们实际证明了CartoCX由于其片断平稳性,但在解释错误分类时也特别恰当地展示了CardentX。
translated by 谷歌翻译
我们研究光谱图卷积神经网络(GCNN),其中过滤器被定义为通过功能计算的图形移位算子(GSO)的连续函数。光谱GCNN不是针对一个特定图的量身定制的,可以在不同的图之间传输。因此,研究GCNN的可传递性很重要:网络在代表相同现象的不同图上具有大致相同影响的能力。如果测试集中的图与训练集中的图形相同,则可传递性可确保在某些图上进行训练的GCNN概括。在本文中,我们考虑了基于Graphon分析的可转让性模型。图形是图形的极限对象,在图形范式中,如果两者都近似相同的图形,则两个图表示相同的现象。我们的主要贡献可以总结如下:1)我们证明,在近似于同一图形的图的图下,任何具有连续过滤器的固定GCNN都是可以转移的,2)我们证明了近似于未结合的图形换档运算符的图形,该图是在本文中定义的,和3)我们获得了非反应近似结果,证明了GCNN的线性稳定性。这扩展了当前的最新结果,这些结果显示了在近似界图子的图下显示多项式过滤器的渐近可传递性。
translated by 谷歌翻译
全球导航卫星系统通常在城市环境中表现较差,在城市环境中,设备和卫星之间的视线条件的可能性很低,因此需要替代的定位方法才能良好准确。我们提出了Locunet:用于本地化任务的卷积,端到端训练的神经网络,能够从少数基站(BSS)的接收信号强度(RSS)中估算用户的位置。在提出的方法中,要本地化的用户只需将测量的RSS报告给可能位于云中的中央处理单元。使用BSS和RSS测量值的Pathloss无线电图的估计,Locunet可以以最先进的精度定位用户,并在无线电图估计中享有高度鲁棒性。所提出的方法不需要对新环境进行预采样,并且适用于实时应用。此外,提供了两个新颖的数据集,可以在现实的城市环境中对RSS和TOA方法进行数值评估,并为研究社区公开提供。通过使用这些数据集,我们还提供了密集的城市场景中最先进的RSS和基于TOA的方法的公平比较,并以数值显示Locunet优于所有比较方法。
translated by 谷歌翻译