一种被称为优先体验重播(PER)的广泛研究的深钢筋学习(RL)技术使代理可以从与其时间差异(TD)误差成正比的过渡中学习。尽管已经表明,PER是离散作用域中深度RL方法总体性能的最关键组成部分之一,但许多经验研究表明,在连续控制中,它的表现非常低于参与者 - 批评算法。从理论上讲,我们表明,无法有效地通过具有较大TD错误的过渡对演员网络进行训练。结果,在Q网络下计算的近似策略梯度与在最佳Q功能下计算的实际梯度不同。在此激励的基础上,我们引入了一种新颖的经验重播抽样框架,用于演员批评方法,该框架还认为稳定性和最新发现的问题是Per的经验表现不佳。引入的算法提出了对演员和评论家网络的有效和高效培训的改进的新分支。一系列广泛的实验验证了我们的理论主张,并证明了引入的方法显着优于竞争方法,并获得了与标准的非政策参与者 - 批评算法相比,获得最先进的结果。
translated by 谷歌翻译
与政策策略梯度技术相比,使用先前收集的数据的无模型的无模型深钢筋学习(RL)方法可以提高采样效率。但是,当利益政策的分布与收集数据的政策之间的差异时,非政策学习变得具有挑战性。尽管提出了良好的重要性抽样和范围的政策梯度技术来补偿这种差异,但它们通常需要一系列长轨迹,以增加计算复杂性并引起其他问题,例如消失或爆炸梯度。此外,由于需要行动概率,它们对连续动作领域的概括严格受到限制,这不适合确定性政策。为了克服这些局限性,我们引入了一种替代的非上政策校正算法,用于连续作用空间,参与者 - 批判性非政策校正(AC-OFF-POC),以减轻先前收集的数据引入的潜在缺陷。通过由代理商对随机采样批次过渡的状态的最新动作决策计算出的新颖差异度量,该方法不需要任何策略的实际或估计的行动概率,并提供足够的一步重要性抽样。理论结果表明,引入的方法可以使用固定的独特点获得收缩映射,从而可以进行“安全”的非政策学习。我们的经验结果表明,AC-Off-POC始终通过有效地安排学习率和Q学习和政策优化的学习率,以比竞争方法更少的步骤改善最新的回报。
translated by 谷歌翻译
在高维连续任务中学习的学习是具有挑战性的,主要是当体验重播记忆非常有限时。我们引入了一种简单而有效的经验共享机制,用于在未来的非政策深度强化学习应用程序中进行连续动作域中的确定性政策,其中分配的经验重播缓冲液的分配记忆受到限制。为了克服通过从其他代理商的经验中学习引起的外推误差,我们通过一种新型的非政策校正技术促进了我们的算法,而没有任何动作概率估计。我们测试方法在挑战OpenAi Gym连续控制任务方面的有效性,并得出结论,它可以在多个代理商之间获得安全的体验,并在重播记忆受到严格限制时表现出强大的性能。
translated by 谷歌翻译
基于价值的深度增强学习(RL)算法遭受主要由函数近似和时间差(TD)学习引起的估计偏差。此问题会引起故障状态 - 动作值估计,因此损害了学习算法的性能和鲁棒性。尽管提出了几种技术来解决,但学习算法仍然遭受这种偏差。在这里,我们介绍一种技术,该技术使用经验重放机制消除了截止策略连续控制算法中的估计偏差。我们在加权双延迟深度确定性政策梯度算法中自适应地学习加权超参数β。我们的方法名为Adaptive-WD3(AWD3)。我们展示了Openai健身房的连续控制环境,我们的算法匹配或优于最先进的脱离政策政策梯度学习算法。
translated by 谷歌翻译
经验重放机制允许代理多次使用经验。在以前的作品中,过渡的抽样概率根据其重要性进行调整。重新分配采样概率在每次迭代后的重传缓冲器的每个过渡是非常低效的。因此,经验重播优先算法重新计算时,相应的过渡进行采样,以获得计算效率转变的意义。然而,过渡的重要性水平动态变化的政策和代理人的价值函数被更新。此外,经验回放存储转换由可显著从代理的最新货币政策偏离剂的以前的政策产生。从代理引线的最新货币政策更关闭策略更新,这是有害的代理高偏差。在本文中,我们开发了一种新的算法,通过KL散度批次优先化体验重播(KLPER),其优先批次转换的,而不是直接优先每个过渡。此外,为了减少更新的截止policyness,我们的算法选择一个批次中的某一批次的数量和力量的通过很有可能是代理的最新货币政策所产生的一批学习代理。我们结合与深确定性政策渐变和Twin算法延迟深确定性政策渐变,并评估它在不同的连续控制任务。 KLPER提供培训期间的抽样效率,最终表现和政策的稳定性方面有前途的深确定性的连续控制算法的改进。
translated by 谷歌翻译
Many large-scale machine learning (ML) applications need to perform decentralized learning over datasets generated at different devices and locations. Such datasets pose a significant challenge to decentralized learning because their different contexts result in significant data distribution skew across devices/locations. In this paper, we take a step toward better understanding this challenge by presenting a detailed experimental study of decentralized DNN training on a common type of data skew: skewed distribution of data labels across devices/locations. Our study shows that: (i) skewed data labels are a fundamental and pervasive problem for decentralized learning, causing significant accuracy loss across many ML applications, DNN models, training datasets, and decentralized learning algorithms; (ii) the problem is particularly challenging for DNN models with batch normalization; and (iii) the degree of data skew is a key determinant of the difficulty of the problem. Based on these findings, we present SkewScout, a system-level approach that adapts the communication frequency of decentralized learning algorithms to the (skew-induced) accuracy loss between data partitions. We also show that group normalization can recover much of the accuracy loss of batch normalization.
translated by 谷歌翻译
This paper expounds the design and control of a new Variable Stiffness Series Elastic Actuator (VSSEA). It is established by employing a modular mechanical design approach that allows us to effectively optimise the stiffness modulation characteristics and power density of the actuator. The proposed VSSEA possesses the following features: i) no limitation in the work-range of output link, ii) a wide range of stiffness modulation (~20Nm/rad to ~1KNm/rad), iii) low-energy-cost stiffness modulation at equilibrium and non-equilibrium positions, iv) compact design and high torque density (~36Nm/kg), and v) high-speed stiffness modulation (~3000Nm/rad/s). Such features can help boost the safety and performance of many advanced robotic systems, e.g., a cobot that physically interacts with unstructured environments and an exoskeleton that provides physical assistance to human users. These features can also enable us to utilise variable stiffness property to attain various regulation and trajectory tracking control tasks only by employing conventional controllers, eliminating the need for synthesising complex motion control systems in compliant actuation. To this end, it is experimentally demonstrated that the proposed VSSEA is capable of precisely tracking desired position and force control references through the use of conventional Proportional-Integral-Derivative (PID) controllers.
translated by 谷歌翻译
Researchers are doing intensive work on satellite images due to the information it contains with the development of computer vision algorithms and the ease of accessibility to satellite images. Building segmentation of satellite images can be used for many potential applications such as city, agricultural, and communication network planning. However, since no dataset exists for every region, the model trained in a region must gain generality. In this study, we trained several models in China and post-processing work was done on the best model selected among them. These models are evaluated in the Chicago region of the INRIA dataset. As can be seen from the results, although state-of-art results in this area have not been achieved, the results are promising. We aim to present our initial experimental results of a building segmentation from satellite images in this study.
translated by 谷歌翻译
Using Structural Health Monitoring (SHM) systems with extensive sensing arrangements on every civil structure can be costly and impractical. Various concepts have been introduced to alleviate such difficulties, such as Population-based SHM (PBSHM). Nevertheless, the studies presented in the literature do not adequately address the challenge of accessing the information on different structural states (conditions) of dissimilar civil structures. The study herein introduces a novel framework named Structural State Translation (SST), which aims to estimate the response data of different civil structures based on the information obtained from a dissimilar structure. SST can be defined as Translating a state of one civil structure to another state after discovering and learning the domain-invariant representation in the source domains of a dissimilar civil structure. SST employs a Domain-Generalized Cycle-Generative (DGCG) model to learn the domain-invariant representation in the acceleration datasets obtained from a numeric bridge structure that is in two different structural conditions. In other words, the model is tested on three dissimilar numeric bridge models to translate their structural conditions. The evaluation results of SST via Mean Magnitude-Squared Coherence (MMSC) and modal identifiers showed that the translated bridge states (synthetic states) are significantly similar to the real ones. As such, the minimum and maximum average MMSC values of real and translated bridge states are 91.2% and 97.1%, the minimum and the maximum difference in natural frequencies are 5.71% and 0%, and the minimum and maximum Modal Assurance Criterion (MAC) values are 0.998 and 0.870. This study is critical for data scarcity and PBSHM, as it demonstrates that it is possible to obtain data from structures while the structure is actually in a different condition or state.
translated by 谷歌翻译
Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.
translated by 谷歌翻译